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limitations of the present computational approach are pointed out, suggestions
for further work free of these limitations are made, and an attempt to acquire
and apply an independent 2-D MHD initial-value code is described.

We conclude with the ilmpression that the use of plasmas for space vehicle

- propulsion is a natural and interesting application of plasmas that well deserves
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FORWARD

This report is an account of resezich undertaken to describe the steady, axisymmetric
flow of plasmas through rocket nozzle:, with attention directed to the use of magnetic fields
for guiding or propelling the plasmas. The primary emphasis is on simply connected nozzles
containing strictly longitudinal {B,, 0, B.) maguetic fields to guide the plasma, with
~ secondary consideration given to annular nozzles containing strictly azimuthal (0, By,0)
magnetic fields to propel the plasma. The possibility and desirability of using hot plasmas
in a repetitive pulsed mode is discussed, and motivates our consideration of an extensive
range of parameters. Although slightly ionized gases having low temperatures (a fraction
of an €V) and low magnetic Revnolds mubers often are the objects of valid and useful
research (for example, in connection with MI™ generators, with MPD thrusters, and
with arc heaters to provide sources of hot gas for expanding gas-dynamic flow fields), we
have chosen to focus upon the eflective and eflicient interaction of substantial plasmas with
guiding or driving magnetic fields. Thus, we focus primarily on highly ionized plasmas that
are not dominated by resistive dissipation. Some of the principal physies issues associated
with these concepts are addressed, including the assumptions and limitations of the ideal
MHUD madel, the magnitude and scaling of classical and anomalous: transport losses and
 of vadiation losses in hydrogen plasma duying transit of plasma through the nozzle; and

- the transport-related detachment problem of how the plasma leaves the exit region of the
. nozzle. Moreover, a formalism is developed for treating the steady, axisymumetvic MHD
" _flow of ideal plasima through the nozzle; and a finite element code based upon the formalism
is construeted with the copability to adapt-a hody-fitted coordinste system to arbitrary

_noszle shapes, This code is validated by detailed comparison. with experiment, and it -

 provides henchinark vesults to which the results of other codes-can be compared. Finally,.

“ the limitations of the present. computational approach are pointed out, suggestions for - .-

. forther work free of these limitations are made, and.an’ atteampt to acquire .md app!y a,
~independent 2.1 MUD initial-value code is desevibed,

We conclude with the impression that the nse of plasians for bpawe whu‘le pmpnlswn;ﬂj

' . is- 8 :mtuml and intcxestmh .npphcauon of plnsums tlmt wvll deserves iurthet studv. SRR
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EXECUTIVE SUMMARY

The thrust of a conventional rocket engine is obtained by allowing a gas under pressure
to be expelled through a nozzle. By operating at higher temperatures to gain more specific
impulse and concomitantly a bigger payload mass fraction, the propulsive gas ultimately
becomes pattially or fully ionized, and one is then led to consider the flow of plasma
through a nozzle (plasma propulsion). In such a schieme, the presence of a properly shaped
longitudinal magnetic guide field can serve to confine the plasma pressure in the transverse
direction, as well as to reduce the cross-field transport of charged particles and thermal
energy to the surrounding walls. We shall refer to this configuration as a “meridional
magnetic nozzle,” and this concept is the primary focus of this report. In another scheme
of interest, which is the basis of coaxial plasma gans and MPD thrusters, it is possible to
accelerate plasma through the nozzle by primarily using internal magnetic forces derived
from transverse maguetic fields vather than u g thermal enexgy. We shall refer to the
latter scheme as the “azimuthal magnetic nozzle.”

Tn more detail, rocket missions may he chavacterized (vegardiess of the mass of the
space vehicle} by the velacity increments of the vehicle that are required to attain the
necessary mission orhits, or to transter from one orbit ta another. The rocket momentum
halance equation then shows that in order to vealize a significant mass payload fraction, the
~exhaust velocity of the propulsive gas relative to the vehicle, Ve, cannet be too much smaller

jtlrm the vequired vehicle velocity increments, On the other hand, the goal of eflicient -
~engine performance (high thrust per unit power) dictotes that the fuel exhaust velocity. -
not be unnecessarily lavge either. These two basic goals, high-mass-payload fraction and-

< efticient utilization of engine power, tend to define a desivable window of operation for
the exhaust velovities (sometines eharaet erized in terms of specific impuise). This, in
ot helps to determine the velative merits of vavious proposed vacket fuels and assoviated -
1 systems, Sinee the velovity inerements for neav-term solar system missious (neav-Bath and
© o tervestrial planet missions) genevally fall jn the vange of 0.5 to 1.0 % 10% emi /s, ((tt‘p‘t‘lt(img, '

. opartly-upen the fexibility desived i the chwice and thving of transfer swlnh) one’ig ledtn -

~ consider temperatures of the Dl gas in the fraction of a eV 1o fow eV Bge (llvdvm,en) e
“[An excellent systematic and defuiled aeconnt of the orbits. wnd velovity increments of .

 interest may he Townd in The Fomdations of Astvodgpamics by Are hie B, Ray* Maemillm,. -

o -NY (1965)] Temperatures in Hils range con correspond to a significant jonization feaction .
~and concomitantly useful electi cal conduetivity of the propalsive gas, to the point where -
“the concepts of mngnetic force either paiding or pru'wﬂmg plismas bevome of fntevest for -~ -

7 yovket propulsion. Fiaally, if-the condition B~ 1is invoked as dv(minp,t!w least Magnetic .

o el shenp,th for which significaut ‘magnetic confinement of plasma pressore is feasible

- (where %3 s the vationof fitemiad plasma pressure 1o extevaal magnetic pressue), then
- an additional-velativistip song the plasma pavametens is provided. This value oi hehs S
»:-’])io\fciﬁ to be relevant Tor azimuthal uozzles also (see Appeadix DY, o R
- 1t is possible, in ptmcmle s Turther ingwove the sitiution !It‘suﬂ!t’d alove, m!h .
fiwg arel 1o efficient fuel mass wilization awd plasmapetie fiek) interaction, by going Ao

“ power consmuption, by adjustaent of the vepete und dity Trelion, i ovder v the
u.lwnw to be ﬂ‘(»‘dlhlt‘ in- lln‘ ear tes. :\ xlel;ulcd compa lwn lwlwwn tm' aaw;idvsbm‘u': o

: a'wm*!xm‘v—pulwd <power approdach that enpliws vory hut plasiuas (andveds ol oV instead
7 of a few eV). This world have 1o be managed without greatly inceeasing the. Hinieaverige




and the repetitive-pulsed burn approaches is made in Appendix C. From this point of
view, hot plasmas remain interesting candidates for vehicle propulsion. This motivates us
to include temperatures in the 100 eV rauge, as well as in the 1 eV range, in the survey of
Chapter 1.

In contrast, chemically driven rocket exhausts are operating at their upper limits
of capability for the needed range of velocity increments, just hecause of the reiatively
modest amount of energy per atom available from chemical bonds. Consequently, such
conventional schemes sometimes attain the required velocity increments by stages, with
attendant mass penalties exacted on the payloads.

(It need not be invariably the case that higher specific impulse (I,p) is desirable as
described above. The actual requirements will depend jointly upon the scheduling details
of a particular mission, and upon the engine-mass -power-utilization figure of merit. If, for
example, a very high aeceleratnon maneuver is called for during a transient phase of the
mission, then a lower specific impulse will better serve the purpose during that phase of

" the mission, for a given figure of merit of this kind. Thus, if the figure of merit is taken to
have a value of N megawatts per tonne, then the instantaneous vehicle acceleration may
be expressed as

200[?] ﬁnyigine
Iap[3] Mrotai '

- wheve [,p = V. /g, wheve Mg, gine is the instantaneous mass of the engine utilized for this -

Acceleratxou[ ] N X

. phase of the mission (including fuel), and Mo is the total instantaneous mass of the .. .

“wehicle. Thins, the vehicle acceleration is maxmuzed by means.of a smull spcclﬁe xmpnlse :
' umpled with a high fuel mass loss rate.) :
7 In this veport, the plasima flow through axisymnietric maguetic nozzle mnhgumtm;w
-is considered. Configneations containing either externally genevated meridional magnem.

fields or azimithal magaetic fields are discussed, but the former receives the primary -

i emplmsn in this report.. A mixed configuration containing hoth !vpes of mngnetm fields

L veport, -
No detailed: mnsxdm‘ntmn is. gwm heu‘m the pmdummi or mmuunment of lhe hen!eti i

- is also lwmble, wnth 1ts owil mlvmttuges and dlsad\.mltnges. hul istol dmusscd in thxs 2

=7 plasmw e the veservolr that feeds the wmeridional nozzle inlet, nor of the nphmal heatinig -
o eehanisns. Attention is restrieted to the problem of producing a description of the flow 0
ol plasing thivugh the nozile, (But plasmu. Iw&lm@, in. the uzmmtlml no:zle s wnsldw-d;_{f{'f'

i Appendives D and E.) C o
Tt Chapter 1 ascoping study-is prewnml whwh deﬁcniws um«hhum under whwh

— 0 the plasma nozzle flow can be nppmxum\teiv vegorded os wn idedl magnetohydrodynmnie =
T (MHDY process, This point of view is motivated by the goal of effective and eflicient -~

":"*_.:_fcinplovstmit of. the guidiag o (lnvmg ragnetic hvlds acting upon substantial plasivas.
" The deviations from ideal MHD are nssociated with transport widd radintion losses for
» which rough estinates dre given, uwludm& the. power loads on the walls of the nozzle.

T This prépares the way for Chapier 14 the purpese of whidh is te dn.mbe the dynamiesl _'

- vesults of the ideal ntodel (e transport losses, no radiative Tossch, no vesistivity, no Hall-

ellect in the plasna) in-order to establish  perspeetive fron which to view aud measuve
S the ellects of the non-ideal processes. - The ideal MID- siteation ‘is of interest i itsell - -

o ] _lm*auw ;l cmmpouds tu gm-um.ur mgunw Ty winda the ’cme;getus of ;hc ﬂow .uc nut ut

. ;;:'
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_ "dnwsml vedistive. diftasion dominates. chissical Teat conduction for plasmias weae 16V
C Ao, e fsietion A dusscs of vl elegy e un.mrphahh Large for i 5 L, Batean b
’_mlnwd by warking \uih Yow-hets phwm.m The wall heat bonds fromi | e} pl.mu.w {wih ]
1) shlsjert to classicnd Aedaspont ae ot winte than a fow Megawalts per synare weter -

4 S
= Hox wradivgof oue weter} i the voige where the plisacmode) is veliable (fon donsities up 720

all dominated by loss processes, and the plasia medium is efficiently utilized.

Some impartant results of the scoping study may be stated briefly as follows. A wide
choice of plasma parameters is laid out for study, with ion number densities rauging from
10'3 em™3 to 10'¥ em ™3, and plasma temperatures ranging from 1 eV to 100 eV (with
occasional comments for 1 kel”). For these deusities and temperatures, the magnetic field .
is determined by our choice of the 8 = 1 condition, so as to provide the least magnetic field
for which transverse plasma coufinement by maguetic pressure is sensible. A table is set
up, which provides the thermal pressures, thrust pressures, and thrust power densities for
all of these cases, and which proves useful for future veference. For this set of parameters, it
is then shown that the plasina may reasonably he regarded as fully ionized. "The validity of
the fluid-plasima medel is then shown to rest upon the smallness of the Coulomb mean-free
path A and of the ion gyro-radius vy in comparison with nozzle dimensions. A table of
values of X and »¢; is laid out for reference. A covdition for neglecting the Hall effect in the
ideal MUD description of axisymimetric nozzle tlow is then found to be that the ion gyro-
radins should be small compared to nozzle dimersions, for both types of nozales. (llowever,
il there exists a low-heta region in the azimuthal nozzle, the condition for neglecting the
Hall effect is found to be the smallness of the ion skin depth, e/w,,, compared to nozale
dunensions.) o : _ -

We then go on to consider mass, heat, and radiation losses frem the plasma while

Citis flewing through the nozale. . To the extent that they oecur, such losses constitute
- undesivable inefliciencies in the utilization of plasmas for vehiele propulsion, Sueh losses:
~ alsa nmst be dealt with on boued the vehicle, by finding beaign ways n utilize or to dispose.
- _~.ut the power diseacded by the plasma, including, if necessary, the peatection of mmmm!y
“from deterioration. due 1o that_power thixe- Here, the Ysmsll” now-ideal terins wust he
yetained inthe plasins model, inelndimg the Hadl and pressire tormisin Ohim’s law, Por 00
- plasmas with temperiatnces near 1=V, we find that classieal resistive diffusion {vadiad nmss:-,_f_.-’.i’._v'tf‘
S rRisport ) ;Acﬁultx W wiee eptablv Inege mask-loss feavtions when the pheie bety s o 70
7 order anity, However, we note that such: loxses can e vedueed by wm‘ku wowith wmeli
7 smndler abites of “hera™ fstend of @ =01, {Therefare, fm‘ilter detaiied ﬂncims at low betn
e s 1 el plasiins ae resnneneled. j Phese ohsecvations apply both to the meridional 7
.":'hni-}l*‘ configuration for wll. tim,;‘v@e of miageetinntion of thie elerivons {wee vo. te )y And :
“Htathe wahmuthial sessle wliew: the. electvons e -ty aod (e sl
- we nwbe than when the Seotrons are magnetized, » diffevent saechminam of lateral wase
_'_»-;'_'t:.mxymvt ogties’ it play in U azimutial wozzle wherein the Hall ter W ratler i,
Copesishive (hih’4~tnll ditevmrines vadivl mass ransports. Concomitantiy, it is Tonnd that when 0
o the eleetrons ave wagnelized in thenvhuithal nossle, muss teonsport e be vedueed o
< shall ferietinnal tosves by warking under contlitions i which the fon gyveratins s susall 0
- compared Yo aozzle mdmi diviensions, n thix ense the vadinl spave Between the inneesid .
L wiiter eldetrodes: {A tablc* ol clu!mn cmti i dcgtm ul nmgﬁvl»m.z I8 pm\‘ulcd Jur' B
: -'.,-A?{Ardc}‘muc) ‘ : » o
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to 10'® em™3). However, at temperatures of 10 eV and above, classical transport allows
‘radial thermal fluxes of hundreds to thousands of MW/m2 for ion densities exceeding
10*7 em=3. (The standard plasma model remains reliable at much higher densities for
T > 10 eV.) Thus, although the fractional thermal losses from conduction or convection
‘are small at the higher temperatures, the absolute energy fluxes to the wall will be large,
and may be cause for concern.

A possible source of non-classical transport that has received much attention in plasma
physics is called Bohm diffusion. When the electrons are magnetized (wee > vei), a form
‘of electrostatic turbulence in non-equilibrivun plasmas can be generated and produces an
anomalous collision rate for electrons leading to a non-classical diffusion process across
:the ambient magnetic field. Surprisingly, for all cases studied we found that Bohmn losses
dominated classical in only three significant cases, namely n = 105,10 and 10'" ¢m 3,
-all for T = 100 eV, producing thermal fluxes of 6.7, 21, and 67 MW/m? respectively.
“In all cases, the Bolun Reynolds numbers were much larger than unity, signifying small

, »fractlonal losses.

With regard to radiation losses, the nature of the losses depends upon whether the
plasma iz optically thin or optically thick. In al' but two of our standard cases (at 1 eV'), the
-plasma may be regarded as optically thin. Moreover, bremsstrahlung rather than cyclotron
- radiation proves to be the primary form of radiant energy loss. We note that this form of
enersy loss depends upon an integral over the plasma volume, and therefore is not sensitive
“to adjustments of the plasma profile (for given bulk densities and temperatures). On the
other hand, the possibility is suggested for exerting edge control on optically thick plasmas.
For general diffuse profiles, it is found that the optically thin bremsstrahlung wall
loading in a chamber of 1 meter radius exceeds the wall loading from classical transport
for temperatures equal to or larger than 10 eV and densities equal to or larger than
10" em=3, The bremsstrahlung wall loading is also competitive with or larger than the
. dominant Bohm thermal fluxes for n 2 10'® em~3 for T = 100 ¢V, These radiation wall

. loads can exceed hundreds, or tens of thousands of megawatts per square meter at the
" higher densities cousidered here (n = 107 — 10! em™3). However, it is important to

“note that the plasma propulsion scheme itself becomes questionable at such Ligh deiisities

because the fraction of initial thermal energy lost to radiation by a given element of plasma

clm'mg, its transit through the nozzle becomes large. :
With regard to convective transport losses induced by nonlinear dynmmcal processes .

occurring over macroscopic distances, it was noted that there is as yet no generally -

“accepted, definitive model of turbulent plasma flow through magnetic nozzles inwhiele -
the plasma beta is of order unity and the magnetic Reyuolds nmuber is larger than

unity. This is in contrast to the situation in cmnprewble fluid dynamies whevein aset<of -
.. sophisticated semi-empivieal models has been built up in conjunetion with experiments to .

. provide pmchml models of boundary-layer flow and nozzle flow. Althoush we are swvarcof
- pregress in this divection for plasmas of small maguetie Reyuoleds nwbers and simall betay -

- values (<€'1), we have chosen not to consider this parameter veginie, but instewd to foens. -
upon signifieant Reynolds numbers and beta values that relleet the ellicient. mlet‘xu'lmn ol

substantial (hot) plasmas with the guiding or driving magnetie fields.. -
Within this context, we noted that highly conducting plasmas ave st vnlnm’uhle

to those dynamical processes that avoid the hending of magunetic field lnes, sxamples -

" of such processes in the weridional magnetie nozzle aré the Rayleigh-'Taylor instability. =
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< e dastabilities” (Raleigh-Tayloy m‘»l.tlnhhck) may provide an additional channel by

T

-~

with wave vectors in the azimuthal direction, and the Kelvin-Helimholtz instability, also

with wave vectors in the azimuthal direction. The former instability. can be driven by bad
magnetic curvature in the nozzle entrance region, and the latler by the shear in the £ x B
velocity field that arises naturally in the plasma-wall sheath. (Note:that the magnetized

~ sheath is much thicker than the Debye length.) Neither of these instabilities relies for its

" existence npon the presence of axial flow through the meridional nozzle. In contrast, in

the azimuthal magnetic nozzle both of these instabilities can exist with wave vectors in -
the axial direction without bending the magnetic field lines, and one would then expect -
fundamental interactions of these instabilities with the axial flow field. In this report,”
- our detailed discussion is limited to these convective transport processes in the meridional™ -~

. magnetic nozzle. The influence of these processes on the operation of the azimuthal nozzle:
configuration is a subject that is strongly recommended for future research. '

A quasilinear mixing-length model is constructed so as to provide esh'naies of -
{ g g i

“eqnivalent” axisymmetric convective transport arising from outward fluting of the outer
plasma surface (since sharply bounded plasmas are subject to the most rapidly growing
Rayleigh-Taylor modes). Verions estimates of the boundary layer thickness are made,
resulting in heat lluxes that are competitive with (or even stronger than) radiation wall

fluxes, at temperatures in the range of 10 — —100 ¢V and densities in the rauge. of .

1088 - 108 o3,

The plasma-sheath induced Kelviu-Helmholtz turbulence has been modeled in a vecent

2D full particle simulation by Theilhaber and Birdsall. The Kelvin-Helmholtz vortices
apparently do not contribnte divectly to cross-field plasma transport, hut instead are seen
ta cascade to short wavelengths which ultimately produce Bohm diflusion of electrons.
{"The ions mnst follow, by quasi-neutrality.) Taken al face value, these simulations predict
transport that scaleg very similarly to the Rayleigh-"Taylor induced transport described
“above, but is abont one ovder of magnitude smaller, However, we mmust rexnemnber that

the simulation parameiers were rather unvealistic, aud that stronger trausport may yet
come oud of & more realistic smmiahuu of Kelvin-Helmbholtz turhbulence in the magueti_,zed

“plasma sheath,

The maumner in which plasma exits the nozale appears to be a eritical issue wqmruuz S

further study. For the meridional nozzle, plasma constrained to axisymmetric How will

- experience o resistive drag as it tries to axiolly detoch iteelf from the radially diverging .
omagnetie fiehd lines, This drag will be transmitted to the velicle throngh the magnetie
- fleld eoils. We enil this the “detachment problen.” Such un effect could be prevented if -
- the downstream electvon temperature drop predicted by the simple 1odel of isentropic

SAlow were suflicient to practically deconple the plasioa from the maguetic field. However,

electron poraliel thermal conduetion would tend to counter the (lmvushcxun temperature .-
ehvop, ad it also constitutes an inellicieney in the prﬁ]mlmw process, These two connter. -

- acting effects (nn'ludmg the possibility of electvon-ior recolbination) should be studied
S quantitatively with an axisyimetvie nonsideal MHD sinwlation. Tn the 100 ¢V vange, -
s parallel thermal conduetion was found to be prablem for:all densition below 1087 em
7 andd i the 10 eV vange for all densities below 101 em 1 is important to inelude ﬂua-

m‘l

- elleet when modeling the performance of the mevidioyat nnulo configuration. Moreoaver,
< nonsaxisynmuetric effects may be impoctant in deteendping=how plasis exits the nos sl

"clwer&,mg um:..,m,uc fie

s whu h a \‘csnshw pla&-md can o«qu xp.,a.d!:.* dvomithe

ot .




and should be studied with a 3-D resistive MHD simulation. An approximate estimate -
of the resistive drag of the fields on the plasma for axisymmetric steady fAow is made
Y2 in Chap. I The preliminary conclusion is that the resistive drag force is practically *
always of the same order as the ideal thrust (for magnetic Reynold’s numbers larger than, @
~unity), and is therefore a critical issue that must be addressed. If nozzle input conditions
~“could-he arranged to have either a field-free plasma core contained by-an external layer of
" magnetic field, or an internal plasmoid separated {rom the external maguetic guide field
- by a magnetic separatzix, then the necessxtv to deal with the detachment p*'oblem can be
A obwviated. : : .
In the case of the azimuthal magnehc nozzle, a- related mefﬁmency mey occur i :
‘the exit flow. If the exiting plasma remains highly conducting, it may convect azimiitlial
- magnetic field out into the exhaust. This is also a detachment problem and it signifies;
U iJws- wasted magnetic energy (ultimately dissipated as heat in the exhaust plasma) ‘that lwao
i . not contributed to momentum transfer. Again, the effect could bhe prevented either’ by
N ;_L suihcmnily rapid downstream drop in the electron temperature or by arrangmb to havu e
' -~ the magnetic field become very small near the exit. :

In Chapter II, analytical and numerical procedures are developed for computing
ideal MID steady axisymmetric flows, for given input conditions at the reservoir-nozzle
transition. A code to carry out such procedures has been developed by Marklin for
meridional magnetic nuaales, and it performs a “divect method” search for the steady-

*flow, in contrast to an “initial-value” approach. The latter wonld presumably settle down -
6 the final'state by means of simulated dissipative dynamical processes. The result of this |
~work can serve well as an independent check on limiting cases of more general simulations
' ""('iime dependent, with azimuthal aud meridional magnetic fields, with non-uniform input
_eonditions, and with nou-ideal MIID properties). Marklin’s code has been successfully
‘f validated by a detailed companson with experimental observations on ordinary nozzle
- Alow, That eomparison is pwsrsnted in Chapter I Also in Chapter 11, the important
pgmt, is clearly demonstrated that in order to properly model the ideal MHD physics of
the meridional magnetic nozale, it is essential to include the uu.nsmon from the plasma* .
eservoir Lo the nozzle entrance, o
~The first half of our one-year contract penod (at o level of 0.8 man-years) was used
foss ;wrfnrmm;, work described in Chapter 1, and; as so far desu'nbed in Chapter 1L ’liw
- m«:oﬂud half was used as follows, o
. By nunerieadly experimenting (in Chap. 11) wnh a munber of noza ale configurations
‘possessiog varying degrees of magnetic-pressure-balance of diffuse transverse plasaa -
“pressure gradients, the conclusion was g.,mdtmllv arvived at that the “direet solution” .
Caethed of steady magnetized flow problems in general axisynumetric geometry: is
smpmtationally delicate,  Although the method works well: (as shown in Chap, _‘ﬂ._.
‘nuuimm mput mmhtmns (mtplvmp‘ wall cmahn»d plasnm pressm‘e) it wm\lu nm@f! _

mﬁmzhv is iliat. in mng.,uoh:md uu.&zlc ﬂow w:th mug.,nch ullv mumu:fl p!afmm pu;
‘m (*ihptw mnl hvum‘lmlu ﬂow reg.,wns ave cmn(u..ut‘cd ina vomphmtml nncl hon- -8t 4_.




magnetically-confined plasma pressure using a sharp-boundary model. A nozzle “stuffing
condition” thereby is uncovered in which too much magnetic flux can block the steady flow
of plasma through the nozzle throat if the parameters are not properly chosen.

For the reasons just stated, employment of time-dependent (initial-value) simulations
was therefore deemed to be a superior computational approach to the steady flow solution,
as well as providing access to possible un-steady features of MHD nozzle flow. A brief
‘comparative discussion of such considerations is provided in Chapter III

Consonant with these conclusions, we spent considerable time and eflort to acquire
and become familiar with the use of a time-dependent, two-dimensional, axi-symmetric,

" non-ideal MHD simulation. This simulation includes dissipative plasina features such as
resistivity, viscosity, and thermal conduction, and also has provision for including the
- Hall effect. It is most important to note that the configurations and boundary conditions
~ treatable by this code are not restricted, in principle, to straight cylindrical geometry, but
instead can possess arbitrary axi-symmetric shapes. Moreover, the code can treat free
houndaries, which would e important in the simulations of flows separated or confined
away from the wall by magnetic pressure. Thus this particular code is highly relevant to
the realistic plasma propulsion problem. A brief description of the code and an example
of its ability to simulate plasmoid propagation is provided by Glasser in Chapter IV.
However, neither sufficient time nor personnel were available within our allotted AFAL
contract to properly modify and systematically apply this simulation so as to study
systematically a variety of examples of non-ideal MID nozzle flow. Our present opinion
is that this particular simulation is no longer the best one to use, hecause it does not take
proper advantage of modern FORTRAN and Supercomputer capabilities, making the code
unnecessarily awkward to apply and tedious to modify. We bhelieve that it now would be
best to write a new code lailored specifically for the purposes of MHD nozzle flow,
. l*mallv, Chap. V sunimarizes the contents of this report, compares the various loss
processes, and makes recomunendations lur further work, :
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I. CONDITIONS FOR MAGNETIC NOZZLE FLOW AS AN IDEAL MHD
PROCESS, AND WALL LOADING FROM PLASMA LOSS PROCESSES

Introduction and Preliminary Parameter Survey

This chapter has the purpose of providing an overview of the physics important for
steady plasma flow through magnetic nozzles. Two basic types of axisymmetric magnetic
configurations are discussed, those containing only meridional magnetic fields and those
containing only azimuthal magnetic fields.

Plasma nozzle flows for a large range of sample plasma parameters are considered
- here, with temperatures 7' ranging from 1 eV (envisioned to be characteristic of steady-
state burns) to 100 eV (envisioned to he characteristic of repetitive pulsed burns). (Each
pulse of hot plasma is envisioned to achieve a state of steady flow during the pulse. Start-

up and termination transients are not considered here.) The magnetic field B and the 7~

- plasma pressure P = 2nT (assuming equal electron and ion temperatures for simplicity - 7

here) are assumed to be coupled by the condition 3 = 1, where 3 = 2nT/(B?/2u0) ideally

represents the ratio of internal plasma pressure to external magnetic pressure. (Sometime, . -

we shall simply employ a local beta.) The density n is taken to range from 1013em=3.

to 10'® em™3, except for an upper cut-off point (in the briefly considered 1 keV range)
determined jointly by the 8 = 1 condition and a (somewhat arbitrary) practical upper
limit of 30 Tesla imposed on the magnetic field strength. The corresponding magnetic

pressure is about 5000 atniospheres, which the magnetic coils would have to support under -

tension. These sorts of field strengths are at the upper limits of presently euv:sxoned future
tokamak experiments in magnetic fusion energy devices. -

In addition, parameter values that invalidate the fluid-plasma model are ﬂagged and
are different for the meridional and azimuthal magnetic nozzles. Moreover, high densities
and low temperatures are flagged for which basic, conventional plasma phvsics assumptions -
are invalid. For all of these parameters, the quasmeutl ality assumption, |n. — n;| € n,
is valid because the Debye length, Ap = (;";;,7;,7)1 ‘, is short cmupm‘ed to dimensions of

interest, and the electron and jon plasma pcuods (“’"'"‘, =1/2 are short compared

My

to times of interest, : ’

, For each set of parameters, a set of relevant Reynolds numbers and time scales
is evaluated for hydrogen plasma, leading to estimates of fractional energy losses, both
thermal and radiative, and corresponding estimates of power densities loading the walls of
“the nozzle, In addition, the thrust pressure and thrust power density are provided for each
case. lu the absence of generally accepted definitive models for turbulent MID houndary
layers, several provisional models are utilized to estimate the thermal transport.

, Finally, with regard to radiation losses over the range of parameters consiclered, it is
Cimportant to distinguish between c;pticullv thin and opti( ally thick plasmas. The length

_ scule for which this distinction‘is dvawn in this report is taken (somewhat ar Immnlv) a8 R

10-cm.
" In the following table, Table L1, we present the magnetic field strengths and
magnetic pressures for 4 = 1 plasmas, for a range of densities and  temiperatures assumed’
-t be present in the throat of the nozzle. Approximate formulas arve also presented (in the
- quasi-1D approximation) for the corresponding thiust pressure and thrust power density,

L both referred to the avea of the throat of the nozzle for convenience, For thermal throat’ -

8 -




A (571 31qei @9s pesodun st wd @ = red-sa1j-ueaw snyj “1d 01 cm.cu
45818 y3ed-2s1y-ussw jo sonjes sSey osfe x pue 7| 3|qe] 395 ‘pannbas 51 1 L yuz) fepows meEQ.ﬁSm PIepuelsS JY) JO SPISIAO I X PINIEW SISED

T\w&c \c Twﬁc& X Qow =~ w.ﬁ 7 _ s 3p04Y] 4O ERIE O3 pIis2yII KGTISUS(] JoMOg IS q
A o7g =~ o-.. st 3e0d3 JO Nokm.. OF possofas 2INssdig JSAiyj - )
(v xipueddy 336) N
: , 00% ‘9% 059 ¥ osb .
(o122 ¥'68) . £8g ¥6'8 €8T 60T
00C ‘9% 0c9 ‘% cov ToF
€8T ¥6°8 €8¢ 1-01 X ¥6°8 10T
029 ‘v 9y raL ) 4 cov
¥6'8 €8¢ 1~01 X ¥6°8 1-01 X €8T 2161
cov i 2 9y 1-01 X 9% ,
x €8T 1-0T X ¥6°8 1-01 X €8T :-01 X ¥6'8 0101 S
o .# . 3
W \
T 9% 9¥ (0T X TOF -0l X 29°F T
. x 1-0T X¥6'8" 1-01 X €87 --0T X 768 z-01 X £8°C 501
R | z9¥ (0T XT9¥ 01 XT9¥ ¢_OT X 29%
o x 1-0T X €8¢ x ¢-01 X¥6'8 :-01 X €8°C £-01 X ¥6'8 #101
SN 10T X 29F ;0T XTOY ¢ 0L XT9¥ fzsdl, 01 x 2% X
7 R x 01 X¥6'8 x ¢-0T X €8¢ s-0L X ¥6'8 [p1sazlg_01 x £8°C £10T = [g-unju
o , 00T 001 o1 1 49
// cnn_ u (jewsayy) aunssaid jeosyl  : d.l 'ejsa) wm 0g)

sewseld 5?2: w1 = g, J0j SN pue sppLy uao..mus_ Tt 318VL




pressures exceeding 10 psi, one sees that tremendous instantaneous power densities are
involved. (Note that “thermal pressure” in the nozzle throat is distinct from “thrust
pressure” referred to the area of the throat.)

This is followed by Table 1.2, which presents values of “(nA” for the same range of
densities and temperatures. When (nA > 1, conventional plasma theory can be used.
‘This is known as the “weakly coupled” plasma model, wherein the average Coulombic
- interaction energy of a particle is small compared to its average (random} kinetic energy.
At high densities and low temperatures, this model breaks down and the plasma tends
to become “strongly coupled,” describable only hy much more complicated and less
- understood models. Such cases will not be cousidered here, aud are marked with “x”
in the tables. ' '

- TABLE 1.2 Values of {nA (Ref. 2)

e —— e m—— ———

TleV] 1 10° 100 1000

nlem 3= 1018 . 845 1.9 1495 17.25
oM 73 1045 1380 16.10

10T 615 9.60  12.65 1495

10 500 845 1150 13.80

107 385% 7300 1035 12.65

W 270% 615 920 1150

1010 1.55%  5.00 805 10.35.

T <h0eV A =234~ 115 logn -+ 345 logT
T>560eV: (nA=253-1.15logn+ 23 logT

- A._Neglect of Charge-Neutral Collisions, and Validity of the Fiuid Model

Aot R e

1. The Role of Charge-Neutral Collisions. A partially ionized gas way, for

- some purposes, be regarded as fully ionized. To make this point, we shall eximine
“elastic scattering eross sections and collision frequencies for electrons on nentral monatomie

~ hydrogen compared with those for electrons seattering from hydrogen jons. (‘Throughout
~ this chapter, only hydrogen plasma is consiclered, both for simplicity and because larger
“specific impulse is more easily achioved with the less massive ions, Also, temiperatures in. -
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the 1 €V to 10% eV range are considered, subject to the validity of the fluid-plasma model
as mentioned above.)
Burke and Smith! calculate the scattering cross sectiom of electrons on neutral
" hydrogen atomns at energies between 1 and 20 eV. They find the cross section o,y ranges
"from near 1014 ¢n? helow eV down to near 10 3 em? above 10¢V. ‘Ihe enhanced cross
section at lower energies is associated with the “electron aflinity” of H wherein the incident
electron is temporarily captured to produce a meta-stable H™ ion. At higher energies, the
scattering cross section is essentially geomet rical (including the effect of the wave iunctlon
-of the incident electron in addition to the “size” of the atom).
N The momentum-transfer cross section for Coulomb scattering of clectrons on hydrogen
~ ions can be simply calculated from the characteristic length r; = (€2/T) (in cgs units)
“.where T is the electron temperature in energy units. The distance of approach of the
electron to the H ion, r¢;, is where the representative electron with kinetic energy T begins
to feel the Coulomb potentiz! of the HY ions and tlms hegins to have its orbit altered. The
scattermg cross section is then estimated as o¢; = wrZ,(nA, where the Coulomb logarulnn, N
fnA, is appended to account for the cunulative eﬂects of multlple small-angle scatterings.?
- For situations of interest in this report, (nA =~ 10, and the momentum—transfer cross section -
for Coulomb sca.ttermg of electrons by Ht ions becomes

—-12

ae,[cm]~064x T
(eV)

For temperatures not greater than 10eV, we see that the cross-section for C-oulomb .

scattering dominates the cross-section for electron-neutral scattering.

Although this result is suggestive, it is really necessary to compare the collision
frequencies for these two kinds of scattering, rather than the cross-sections, This
“-comparison is especially necessary for high temperature plasmas, the particles of which have
small Coulomb-scattering cross-sections. The (‘oulomb collision frequency for momenmm
“transter of electrons w:th ions can be estiniated approxxma.tely as :

Vei R N0V

where n; is the ion density and v, is the electron thermal velocity, v.[em/s] = 5.7 x 1071“ ev)

‘using me & 1 % 10727 gm for the electron mass. . (A more accurate expression ior u,, i3
used later in this dmpter ) Thus '

- | _gtilem™3)
veils™'] % 3.6 % 107° '1“‘" -
' ' (eV)

.('10 clarify our notati fon, we emphasize that w,; is here used to represent a momentum

. transfer rate, so that v} does not represent the electron-ion energy equipartition time.)

In order to estimate the electron-neutral collision frequency arising from elastic
scattering, and to compare it with the electron-ion momentum-transfer collision frequency, .-
we shall need to know the degree of ionization. Assuming that the atomic rates ave fast =

TR




enough to maintain a local equilibrium state at each point in the flow field, we have from

Reif, Chapter 9,32
2 (nu,.'l‘)'“‘/2 g
e = €
& ng

where £ = %‘n = %: is the degree of ionization referred to the total density ny + n; = ng,
ny is the residual density of neutral monatomic hydrogen, T is the local temperature in
-energy units, and ¢y = 13.6eV is the ionization energy of hydrogen from its ground state.
‘Also, i = h/2m where h is Plauck’s constant, and m, is the mass of an electron.

(If the atomic rates are slow in comparison to the transit time of plasma through the
 nozzle, it is better to think of this formula as describing the quasi-equilibrium reservoir -
“plasma. Then, this pre-nozzle ionization will tend to be 1namta.1ned in the flow, and i is
better described in the flow hy non-equilibrium models®- =by

The above rela.txon can be conveniently rewritten as .

where f(T) = (;’;h ) W2 el Thus, for a specified ion density and temperature, the
‘ latxo (ni/np) is known, and the ethbrmm degree of jonization in hydrogen follows from
€= (ni/ny)/(1+(ni/nk)). The degree of ionization is gwen in Table 1.3 for a large range
of densities and temperatures. One sees that the piasma is practically fully jionized in most
cases, except for those cases already ruled out as bemg heyond the scope of the standard
- .plasma model.

The ratio of the electron-atom. collision - frequency to the ele(.tron-xon collision

frequency can be written as

Vel "H"eHve . NH OeH
Ue 1&,0“1’0 C ‘n“ aci

- This ratio is listed in Table 1.4, where we used nominal values, ooy = 10714 em? at
T = eV, o,y = 1071 om® for 7510 €V, One sees that the electron-atom collision
~frequency is alwa.ys negligible for all cases within the scope of the model. Since, according
_to Ref. (4), oiy is of the same ovder as TeH)s and a;; is of the same order as o,;, one’
~ sees that the ion-atom collision frequency is also negligible ngamst the ion-ion collision
- {requency. ’
We shall therefore neglect ion-neutra! and electron-neutral collisions in this veport.
- We nevertheless remark that as the temperature in the plasma decreases near a material -
surface, the degree of ionization drops exponentially (€2 is proportional to exp (—¢y/1'))

~s0 that charge-neutral collisions ought to become prominent in edge layers. Impurity jons -

. released from the wall will also contribute to the Coulomb-collision rates of electrons. and -

*“hydrogen ions in ecge layers, but these processes are not considered in this report. i

2._The Limitations of the Fluid Model. Continuing with our examination o

~ the conditions required for invoking convenient idealizations of Howing plasinas, we now ask

- ~when the fluid model of such a plasia is valid. Quite generally, fluid wodels ave validated
< by a “localizing effect,” the eflect of which is that a local zeoup of particles retains its.
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TABLE 1.3 The Equilibrium Degree of lonization
of Hydrogen Plasma (——i— _Hm)
(In the tables, “n" represents the number density of ions.

TleV] 1 10 100 1000

nlem=3)= 10 . 0997  1.000  1.000 1.000
10 0.974 1.000 1000  1.000

0% o7ss 1000 1000 1.000

10" 0271 1000 1.000 1.000

107 0.036 * 1.000 1000 1.000

10 0,004 * 1.000  1.000 1.000

10'° 0.0004* 0.9996 1.000 1.000

gronp identity during a dynamical time of interest, and is not dispersed by random kinetic
“motions of the individual particles during this time. For an ordinary fluid composed of
particles having a colhsmnul mean-free path A, undergoing a <Iynmni('a-l process having a

characteristic time scole 3, where L is a characteristic macroscopic length and V is a typical = -

»macxoscopnc fluid velocity, one can easily show (invoking the diffusivity D = Ay, = A\
where vy, is the thermal velocity of the pmtules and » is the collision ﬁequencv of an
average particle) that the dispersal time is long compared to {‘, provided that % ¥ >

~ (assuming that V is on the order of the thermal velocity of the particles). Accordingly, we

* list values of the electron mean-free path, A = 3% in Table L5 below (in Sec. LB). Theion- = -

" “mean-free path will be about the same? provided that the electron and ion temperatures

- ave close. (In this scoping chapier, we assume a single temperature for simplicity.) Cases in

-which the mean free path (along the meridional magnetic fiekl) exceeds 102 e ave flagged,

< because the fluid model of the plasma flow through the meridional magnetic nozzle then <.

hecomes suspect, and should be replaced with a kinetic model. 0nlv cases accessibletoa -

7 fluid treatment will be considered in this report. .

‘With regard to the azimuthal magnetic nozzle, a large mean-free path along I is not -

o pmhml&u‘lv significant or detrimental for the fluid model of axisymmetric flow becanse B - |

is in the |gnom|)le (azlmullnl) divection. Instead, the localizing agent velevant to (r

fluid motions is the ion gyro-radius, Yeis ("T'he symbol r; historically stands for “ion =

o -cvclotton t‘adms.f" It is deluwd by r‘. = u,/w.., wlnore vi is the ion tlwrmal veloutv and,;




TABLE 1.4 The equilibrium ratio of electron-atom coliision frequency to
electron-ion collision frequency for hydrogen plasma.
(The electron-atom scattering cross-section was assigned
nominal values o,y = 1071 em? for T =1 €V,
Oy = 107¥ em? for T > 10 eV)

o — e et
e ——————.

TleV] 1 10 100 1000

alem™3) = 10% | 42%107°% 6.4x10711 60x 107! 1.7x 107
| 104 42x107 64x10-° 60x10°° 17x10°

10 42x107° 64x107° 6.0x107° 1.7x 1078

10 42x107* 64x 107 6.0x107° 1.7'>< 1077

10 42x 1071 64x1077 60x1077 1.7x107°

1018 4.2 * 64x107% 6.0x 10-¢ 1.7 x 1078

10 42x10 X 64x10°% 60x10"% 1.7x10-¢

Wi = (€B/m;e)eq, is the ion gyrmfrequencv in the maghetic helcl B. ) Now, one caun invoke -
~the jon collisional diffusivity across the magnetic field, D = v, wheve v;; is the ion-ion -

- Coulomb collision frequency. Then, repeating the same mgumeut as for the mean-free-path
‘case above, one finds that the dispersal time for the minor cross-section of a ring-shaped-

(annular) group of ions to spread out in the (r,z) plane will be long compared to &
o - provided that '(Ji') ‘-"-“) 31 (agein asswining that V ois on the order of or larger than
- the thevmal ""l"‘”"" of the ion particles). Thus, it is required, at least, that % » 10 (A

supporting eondition is that there should he many ion gyvo-periods between collisions of

an avm age ion, wey > ¥ Acmrdmbly, we also list values of the dembeu ion gyro-radius 7
inTable 15, It appears that ».j is a comfortably small scale length in all but the lowest

"'.'-":;_ftk-m.ﬂv cases, We emphmn_zo that the mmbumll_v worrisome value, v,y 25 e, obtained -

Hor n o= 1013 em™3 in Table L5, is a canse for concern in fuid-plasiia wodeling of both.

. Aypes oi magnetic nozzles, memhoual and awmuilml i tl\ew transverse dnuensmm are ot .
"mudx larger than 5 em, - - .

~We also note that when A « ?‘us the comhtmn for validity of llw finid moflel .\g.,um' .'

N rcverta Lo tlw wndmun that L. “i) 1. llcu, we. notc tlmt e frec path .,mttemub for ="
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A < 7 oceurs in all directions (especially across ﬁ) and thus can affect, in principle,
the validity of the fluid model for both tvpes of magnetic nozzles. However, Table 1.5
shows that whenever A < r,; docs occur, the length scale for \ is', in fact, comfortably
small compared to envisioned nozzle dimensions. Therefore, the value of \ is a concern
only when it is large and thereby affects the validity of fluid modeling of the meridional

"~ magnetic nozzle,

Finally, we note that Appendix D addresses the notion that B ~ 1 is a reasonable
relation to invoke for the scoping study of azimuthal magunetic nozzles as well as
meridional magnetic nozzles; and we mention that the limitations of the single-temperature
assumption for azimuthal nozzles are addressed in Appendix E in which the degree of
electron heating is estimated for these devices. ‘

B. Neglect of the Hall Effect in Ideal MHD

The often-neglected Hall term in Ohm’s law is (in MKS units)

——Jxﬁ

ne

Usnally, one compares this to the V x B term in Ohms law,

1

*+V xB=—JxB+nJ—-—VP,
ne ne

Here
V" = fluid or plasma velocity
B = magpnetic field strength
n = particle number density
J = current density
E = electric field
P, = electron pressure

11 = resistivity of plasma ‘
The fluid momentum equation is used to estimate J x B. The transverse (cross-field)
component of conducting fluid momentum balance in axi-symmetric steady flow is

— -

p(V-VV).#4(VDP)-#=Jx B+

where P is the total pressure of electrons and ions, p = nm; is the mass density, and
where 7 is a unit vector in the relevant {ransverse or cross-field direction. Thus, 7 is in the
radial-like direction for meridional magnetic fields (J x B = JgB.#) and 7 has components
in the radial and axial directions for azimuthal magnetic fields (Jq.\( B= JoBgz — J.Bor).
Here, we are referring to cylindrical coordinates (»,6, z), and unit vectors # and 2 in the
radial and axial directions respectively.
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If we assume that transonic flow is characteristic of the configuration, then both terms
on the Chs of the momentwn equation are comparable, and we estimate that

P amy 1’2

T _ . lfxﬁ

where ¢ is a characteristic cross-field dimension of the flow configuration (€ is the smaller
‘of the cylindrical radius and the radins of curvature of a representative streamline), ard
v; is the ion thermal velacity, which is comparable to the sounic speed in the plasma. The

desired inequality for neglect of ihe Hall term,

together with the transonic egtxisxlat.e,glf ., then leads immediately to the condition -

v
1 >> (Wue.L )

where we; = (eB/m;)apcs is the ion gyro-frequency,
In other words, the above considerations lead to the condition that the represent u.twe-
iew gyro radivs, vy = (vi/er), should be small compaved to the charvacteristic cross-field

- dimensions of the confignration, as a requivement that. the Tall term should be ignorable -
- in'a madel that describes the ideal dynamical properties of the highly condusting flwid, -
7 This avgnent as given above is certainly. reasenuble for azimuthal magnetic nozeles in:
whu:h the dominant flow is across the magnetic fiekd so that V % B is a dominant term, =
S “However, in the cose of plasma How throngh meridional magnetic nozzles, the above:
o argument and vonclusion nust be re-exantined and veconstrueted, hecause the flow (which’
i indeed tmuwnw) is parallel to the mnwvm htid ¥ xB Oin vieal MHb (see Appendix
7 A) s that the baske: desued nmquahiy, \a X B{ » o lJ X- IJ}, makea o sense in the
- miexidional ease, o
S Thus, we yeconrider er wer whmml mugnvhs' hvltl wnhgursmom I\nowm, :Emt me'
-:.-'f}ﬂaw is parallel to - and is transonie-in-idenal MHD, we ask what is the eftect of the Hall
. tevun ‘on the distortion of this flow: ln thermaly-driven Qow whieh is praciiestly parallel
o B, there is no inconsistency in sresnging to have nll meridional woguetie field Yines held “
at the same electiie 1mtenlml T fety the electyic field porperdicialar to ] ustvanish
< ncideal MHD with purely parallel flow, bevanse the field Bues are inunersed in a highly
Ceonducting fluid. i\wunnng this to be the vase with the Tall offect present, the O’ .
Caw nwlltdmg tiw Hell ii:m! (imt negh'ctm&. ihe rcsmhw mtd dt.ulmp,nei i wrms) heemm-ﬁ '
L ;;;m‘;i’ A Lo : - N




where the Hall-induced velocity increment, A , is in the azimuthal direction as dictated
l\\' ’n X B

Thus, if all meridional magnetic field lines are held at the same electric potential, the
main eftect of the Hall term is to induce a small rotational motion of the plasina. To see
how swall this rotational motion really is, we re-write the above equation as

Vel =

-~ —
and use the transverse momentum equation as hefore to provide the estimate of |J x B|
given above, which is still valid. The outcome of this exercise is simply that

B |V9| Pei
LT AN
v Ll

which implies that the rotational motion will be negligible in comparison with the transonic

(parallel) flow provided that the ion gyro-racius is small compa.red to the transverse
' '3i:-d1111e113101ls of the nozzle.

rei K )

‘This is the same condition we found earlier for neglecting the Hall term, but now derived

) “in a manner that recoguizes explicitly that. in the meridional case, the basic plasma flow
s parallel to B. This small 1on-gyro-radms requirenient will generally be satisfied in cases
B ot mteresi (See Table 1.5.)

“As a final remark on the meridional configuration, we observe that (ne)~ (fx B),
a8 estmmtod above, is on the same order as the electron diamagnetic term in Ohm's
taw, (ne)~ Y P,, for comparable electron and ion temperatures. Thus, the condition for
‘neglectmg the electron pressure gradient (diamagnetic term) in Ohm's law is essentially

+-the same as the condition required to neglect the Hall term, namely, ro; « €. Ineluding

either of these terms has the effect of producing only a slight azimutial tw:at to tae ﬂmd -
streamlines, '

Finally, as a check and to illustrate a certain point, we reconsider the azimuthal
maguetic field configuration. Here, the accelerated flow is prmmrllv axial due to the
( T x 139) force, In this case, a divect comparison of the ]V By term in Ohw’s law to the
often neglected Hall term can be made in a straight forward manner. Referring to the axial
cross-ficld cmnponwut of the fluid momentum equation written dowu at the heginning of
this section, and usmg convenient cgs units in this case, the rhsis (. I's H)-#. Since, along

a streamline, ‘;'a ~ ?:f' the inertial term on the fhs can he estimated by (pV 2 1¢.) where

£, is a charactetistic azial length of the azimuthal mabuelw nozale. This term sulliciently

represents the Chs of the axial momentum equation since it will he coniparable to the axial
pressure gradient terwmy in transonic flow, (Since # ~ 1 (see Appendis D), transonie and
trans-Alfvénic flows are essentiolly the same condition.) Since the flow js characteristically -
trans-Alfveric (see Appendix B), we can estimate as follows.

1

]J X }3] A
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Here, C3 is the square of the Alfven speed, given by, .
C% = Bj/(4mp)

in cgs units. I Ohm’s la.w, the desu‘ed inequality for neglecting the Hall term (in Cgs o
umts) : . e

Jx B|.

> —
nec

Using the above estimate for 1 |.J x B|, and the characteristic trans-Alf¢enic flow velocity,
V ~ Cj4, the magnetic field cancels out. and the mequahty is easxly rediuced to -

Cowp LU, '
where wy; = (47ne?/m;)/? is the ion plasma frequency expressed in cgs format and c is
the speed of light. The above derivation is valid as it stands if conditions i1 the azimuthal -
maguetic nozzle happen to be “low beta,” i.e. 8 <« 1. Then, the characteristic length
that needs to be small in order to neglect the-Hall effect in ideal MHD modehng is (¢/wpi)
rather than the ion gyro-radins,

But 55— = —»}? = 1, provided that the ion beta, 8; = 8mnT; /Bz, is of order unity,

A
as it should be for azimuthal magnet.nc nozzles (see Appeucltx D). Thus, we are again led to
the condition of a small ion: gyro-radius, €, > #.;, in order to neglect the Hall term. Oue
can genevally expect this condition o he well satisfied. Here, it is important to remark that
although the small ion-gyroradius condition is a reasonable general assumption, particular
devices may contain localized regions in the axisymmetric flow that entail sharp graclients,
comparable to r; (or smaller), within which the Hall eflect may play an nnportant role.
Flows that develop loca: a&vmmet ries are also subject to this effect.

- Morozov and co-workers®*®~® have discussed some aspects of steady axisymmetric
- MHD flow with account of the Hall effect. Mathematically, they find that the ideal MHD = =

equations including the Hall term arve not well-posed aud that the eéquations to be solved -
are, therefore, vilnerable to instabilities. Moreover, they find that the equataons do hecome

.. well-posed and computationally robust provided suflicient resistive diffusion is added to

““the model by including the yJ term in Ohin’s law.  The computational results®=® show
that the Hali term induces the formation of strong localized plasma currents at cevtain .
- chavacteristic positions on both cathode and dnade, suggesting that the l{all eﬁeyt may be
‘velated to electrode erosion in azimuthal magnetic nozzles, : '
- It needs to be remarked here that the order of the Hall tenmy compared to x’emmnmg,
terms in Olun's law is similar to the order of certain cmnpmwmq of the ion magneto-

~ viscosity tensor compared to remaining terms in the fluid momentum equation.? Therelore,

ST @ proper compntm ional treatment of the Hall effect may also require the i incorpor: ation of

the corvect ion viscosity tensor in the computational models, This point is often ignored

~hecause the Hall term by itsell constitutes a shuple addition toideal MUHD, whereas it is -

- much more diftieult to construet computational toels containing the full Braginskii viscosity .-
“tensor, Refe 5:-b does not seem to lw.'e mclmicd bath cﬂwts at llw sane hme in tlxe' )
wmputahmml mudel B R o
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.C. General Conditions for Relatively Small Losses from the Flowing Plasma

1. Transport Losses.

a. Mass Transport. First, consider cross-field (radial) mass
transport of plasma. To the extent that it occurs, this process represents an inefficiency of
the guiding (meridional) or driving (azimuthal) magnetic fields, and it allows hot plasma to
approach the walls. Both mass transport and heat transport may occur either as the result
of Coulomb collisions of plasma particles (e.g. of electrons with ions), or as the result of
convective motions induced by instabilities and /or turbulence. The latter possibility will be
discussed in later sections. In this section, we limit the discussion to collisional transport.

The reader is cautioned that Hall and pressure terms in Olin’s law must he retained

< at the outset in this discussion. The previous section (I-B) showed only that such terms

“are small within the coutext of ideal MHD, but hexe, we are considering “small™ non- -ideal-
* eflects. : ~
We shall take Ohm's law, and vector-multiply it with the ma.gnetlc ﬁeld B, retammg ‘

- all teuns Ohw'’s law reads (conveniently in cgs units),*

(I.1)

‘After taking the cross-product of this equation with B and dividing by B2, we consider
the radial component (or its generalxzatxon to axisymmetric geometry). The- result can be .

. -written as follows. :
2

Ly Lo L Jin
(VL—VB)F;-—n—;}; (pV'VV-l»VP)r-{-*-L'—-}- BQ(VPGXB), )

Heve, we have utilized the fluid momentum equation to replace .T % B in the resistive term.
The notation “.L” means perpendicular to the magnetic field B, and Vi represents the
guiding center drift velocity (which can also be regarded as the velocity of the magnetic
field lines), Vg = cf x ﬁ/B2'\vitll E being the electric field in the plasma, Moreover,
- js the plasma ion number densnty, and P is the total pressure of electrons aud ions,

. P= }’ + Pi. Also, in cgs units, “c” is the speed of light in (cm/s).

CASE It THE MERIDIONAL MAGNETIC! NOZZLE (8 = (B,,0, B,)|

~ o the case ol the meridional maguetic nozzle with axisymmetric flow, there are
no®radial” currents in the plasma, and there is only a “racial” component of the transverse
‘electron pressure gradient, [(uadmnts parallel to 5 make no contribution to Eq. (1.2). ]
- Therefore, the last two terms of Y. (L.2) vanish, Moreover, because the azimuthal

electric field, Fp, vanishes in a steady state with axisymmetry, and because Bo = 0 in
the wnhg,umtmn,tlw 13 B dvift has no “mdml” component. lemtoxc, Eq. (L.2) reduces
~_th‘ T ’ o . _
cr o Vi mmgey WV 4+ VP, - (1.3)

T R AN - e S T TRSATRATT AT e (0 e T

® The neglected thermal foree terms do not change the essence of the discussion or the qualitutive . -

- conclusions, but including them would considerubly complicate the presentation. See Appendix F,
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Thus, plasma resistivity allows “radial” slippage of plasma across the magnetic field, said
slippage heing driven hy pressure gradients and inertial forces. In transonic flow throngh
the nozzle, V ~ v;, these two driving terms will initially have the same sign and the same
order of magnitude.® (Here, V = ¥} is the dominant component of flow velocity and v; is
the ion thermal velocity.) However, for long thin nozzles, the “radial” fluid inertial term

Vi . . . . .
%iL, will be dominated by the “radial” pressure gradient. (Here R, represents the radius

of curvature of magnetic field lines.) This is also true for general nozzle shapes in which

the radius of ctuvatme in the meridional plane is larger than the no'azle radius near the

- throat.

For the purpose of making a simple estimate, the inertial term will now he neglected,

- ““and the temperatures will be assumed uniform. Neither of these assumptlons will change
the order of magnitude of the result—nor the scaling properties. -

T hen, upon. nmltlphcatlon of (L.3) by the plasma density n, we ﬁnd

n(Te + Ti) dn L

”“'”2"’” BT or’

(1.4)

where T, and T are the electron and ion temperatures respectively. Iutxoducmg the local

plasma beta by 8= 87m(T +T;)/B?, Eq (1.4) reads

' 1/¢c? an | ) »
Vi = —= | = : : . “(1.5).
nVy 2.( ) o L (1.5)

We see that this equation has the formi of Fick’s ‘law for diffusion, I = {«DVn., where [is .
the partxcle ﬂux, and the partlcle chffusivity is - ' ’

Dpar;["‘“" '___ nﬂ - . ‘ o (I.G) ..

" Here, the resistive diffusivity, Dy, in cgs units is given by -

‘on? c? S ' -
D, (“":9""_)‘ =ah : (1.7)

with 7(sec) being the plasma resistivity in cgs units, -
Since we are limiting the discussion to 3 '»:f“-l, 'wc,_i'sl;a,ll take (1.6) in the form

. ..1

ol Dy (1.8)

DpuM

However, we emphasize that, for low densities ancl low temperatiires, one could probably
aftord to reduce the particle chﬂusthv Dyare by lowering the plasma beta with the use of
stronger wmaguetic fields. (bee Table LL.)

y ’l‘lm is, in the upstremu pottion of the nezzle where the streamlines nrve convex to the nutsicle, the

_inertial aud pressure terma both force the plasma racially outwards, Further downstream in the throat
- unel exit regions, the inertinl-lerw ety radiadly inwards, opposite the pressure tern,

2l -




In order to estimate a time scale for mass loss by resistive diffusion, we shall simply °
divide the number nF mnq present per unit axial length by their loss rate f: om the “radial”
diftusive flux, Dyort 5o a , per unit axial length lhe result is '

(n)mrr? 1 »(n) '
tpart = el 2 TR (1.9)
P (Dplm gn)omr - Dy (§2)° .

where (n) is the average density in the nozzle cross-section. For a parabolic density profile
~ that has n{a) = 0 as the generic example of a general difluse profile, this expression
~ becomes - L . '

a®

b L10) " ¢
part 4l)n (( | )

.- where “a" represents the characteristic radial dimension of the nozzle. »

o Next, we shall compare the characteristic loss time (I.10) with the characteristic
“transit tnne through the uozzle Assuming transonic flow, we shall estimate the.latter.

by o e : R
| == ()

whele ¢, represents the length of the nozzle, and v; = ( i)1/2 pepresents the ion thermal
velocity. Here, we note that v; is close euough to Gy, the speed of sound, to be \.wed for -
-these rough estimates, . - :
. The ratio of (L.10) to (1.11) is

tpart
L

—

Rn ’ : R :v
Znoo S L.12
Y o Cooo 12y

]

- where the magnetic Reynold’s number, Ry, has been defined as (with v; % V- in the

~-transonic flow) . .
av;

1)

IL'::WIZ;,
and the aspect ratio of the nozzle, 4, has been defined as = k o -
: . s | | |
A= _ ' (1.14)
a :

To avoid radial loss of plasma, the desired condition is £,0q 3> ;. We therefore see that
large magnetic Reynelds numbers are required in order to avoid substantial radial niass
loss of plasina (llu'mg transit through the meridional nozzle, for g = 1. More genervally, we
slmll have

) _29" = s/ . . I. o4
T, 4HA : (1.15)

which illustrates that moderate values of R, could be acceptable provided that the
dinvestment can be made in coil mass and power suppheb required to increase the maguehc
: hdd strength ;md thexeby recluw /3




. TABLE 1.6 Values of Magnetic Reynolds Number,
vs. Temperature for two values of
Nozzle radius a. ((nA = 10 assumed)

e ———
——— ———

TleV] = 110 100 1000

a=10cm: 1.6 160 1.6x10* 1.6 x 10°

a=100cm: 16 1600 ‘1.6 x 10° 1.6 x 107

. Note: In. tables such as this, we shall usually maintain only two-significant-figure sccuracy. )

- Values of the magnetic Reynolds number are given in Table L6, for values of nozzle
radius ¢ = 10 cm and a = 102 em. Because of the way Coulomb collisions act to produce

electrical conductivity in plasmas, the magnetic Reynolds number proves to be independent .

of the density of plasma. (To obtain the results in this table, we took T, = 7} and used.

v;(em/s) = 1.3 x 108 TY?*(eV), D, = f;w;n, and 7! = o(s™?) = 0.9 X 1013Tf°‘,/2‘(eV),for, .

" inA = 10. ?)
It is important to add the following remark in connection with the Table, For beta
values near unity, and nozzle aspect ratios near 10, the munbers in this Table must be

" o.- _ divided by 40 [see Eq. (1.12)] in order to properly assess the losses due to radial resistive

~ diffusion of plasma.* We see that plasmas of 10 eV temperature or higher appear to be
. - quite satisfactory in this regard., However, the 1 eV plasmas are clearly not satisfactory
- for unity-beta-values, and should be operated at sufficiently high magnetic fields that the
-correspondingly lower beta value reduces the resistive transport of plasma to reasonable
values, (’l‘his remark applies for general diffuse profiles, but does not apply to the “field-
- free core” version of the sharp-houndary profile (for which beta effectively must be unity) -
advocated later in order to overcome the “detaclunent problem.”) - .

- The Detachment Problem

At this point, it is appropriate to consider the “detachment problem” of how the
plasma exits the meridional magnetic nozzle, hecause the axisymmetric description of
this process depends on the extent of resistive tmnspoxt of plasma across the magnetic
field. We have just seen that large values of R, (or 871R,) prevent cross field resistive
transport of plasma, but this condition of large magnetic Reynolds numbers is _uot
_ desirable for general diffuse profiles in the final phase of axial transit, This is because if
. the plasma were highly conducting, it would then have to follow the radially diverging
- ‘magnetic field lines back around the field coils where it would ultxmatuly deposit its
~ momentum onto the vehicle, thereby negating the thrust.

* However, Fxg 1- b indicates that it may be more accurate to replae A by ,,A in toking these
estimates,

23




An exit plasma with a diffuse profile and with a small value of R,, on the other
~ hand, could use its inertia to coast axially across the radially diverging field lines, and
thus avoid this “hang-up.” The results of the quasi-1-D model of iseutropic Hlow shown
in Fig. 1 suggest that the strong downstream temperature drop, with the associated drop
in electrical conductivity (¢ ~ T%/ 2) might actually allow this detachment to take place.
" "Here, it is important to note that, in order for this to work, the input value of R, should
. be only moderately large, otherwxse the exit value of R, would still be too large to allow -
cross-field transport. (That is, if R, (input) = 10° and R,, (ewit) = 1073 Ry (input), then
one would still have a highly couductmg plasma at the exit.) '
: However, real plasmas are not isentropic. The large parallel (to B ) therma.l
- conductivity of the electrons must be taken into consideration here. This effect, precluded
by the isentropic model, will tend to maintain a high electron temperature (and a high -

. - electrical conductivity) at the nozzle exit, thereby exacerbating the detachment problem. -
‘Au axisymmetric MIID simulation with transport capabilities is required, in principal, to -
A | ) I y
". provide quantitative answers to the combined influences of parallel thermal conduction and - -

“ rate of divergence of field lines at the nozzle exit on the detachment process in particular
* cases. Nevertleless, an approximate calculation that we perform below indicates that

" the effect of parallel electron thermal conduction can. be suppressed for some reasonable -

e with

‘parameter values,
For a time scale to transfer a substantial amount of heat from the hot upstream

-+ -plasma to the cold downstream plasma by means of par allel electr on themna.l conduction, -

_we take the followmg estlmate, , S
te) ~.(’§/Dﬁ yoo : -

 where? the parallel electron thermal diffusivity is - |

e 3vi -
= 9 Ve -
1/2 oy ne?
Ve = (2 Te/me,) y and  ve= Te = meo
. .

o(s™) = 0.9 x 10*° T’/?(eV)for tnA = 10,

,Fox the axial transxt tmu,, we use
- t, = (/v

~ with v = (2Ti/m;)'/? being the ion thermal velocity (which is close enough to C'). We.
- use my for hydrogen, set T, = T; for simplicity,-and thus find a

’g(cm)n(vm"‘"*) B (1.16) - .

-
Yl & .60 x 1014l

It is reasonable to regar d the peu'auncterq in this expression as being evaluated at the
f"‘lmlfwa.y pomt, » that is, in the tluoat reg,lon of the nozale. In order 101‘ electron parallel
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TABLE I.7 Values of (t./t,) for ¢, = 10% cm

TleV]= 1 10 100

e p——
e

o n{em em= 108 6 6x1072 6x 107
10% 60" 0.60 . 6x1073
10"  600- 6 . 6x107%:.

T10' . 6000 60 - - 0.60 -

Table 1.7, for ¢, = 10% cm. : ,

e From this, we conclude that there is a range of moderate upstream temperatures and
+ fairly high densities wherein the effect of parallel electron thermal conduction downstream
 can be mitigated. Of course, the viable range of operating temperaturés can be-increased

~ by the employment of longer nozzles. However, in the 100 eV range of temperatures, it
appears that the effect of downstream electron thennal conduction will be a ma JOI‘ concern

" except at very high densities, - : :
It is important to mitigate the parallel electxon thelmal conduction for another
-reason besides that of allowing detachment of plasma at the exit. This other reason

more specific impulse is realized (see Appendix C for the pulsed power approach to the
* .use of hot plasmas), but then the detachment problem and the issue of efficiency must be
-scrutinized, A trace-off study is indicated, and is best performed by means of a 2-D MHD
~simulation with transport capabilities. (Of course, such a simulation is reliable only when -
~ the Coulomb-collisional mean-free path along B is short compared to the length of the
. nozzle, See Table 1.5.) :
‘ To indicate the importance of the detaclnueut problem, we shall now make a rough
~-estimate of the magnitucde and scaling of the exit velocity. We shall assume that the
- parameters are such that electron thermal conduction is not a major problem. The
~ possibility then arises that the axial inertia developed by the plasma within the nozale
- - will enable the plasma to coast resistively across the radially diverging magnetic fields at
- the exit. Such a possibility is brought about by the rapid drop in plasma temperature
- " (hence a drop in electrical conductivity) as the plasma expands through the downstream.
' side of the nozzle.
Let us focus our attention on the temporal hehavior of an aunular element of plasma
as it follows an annular meridional magnetic flux tube out to where the field lines turn

2

: thermal condluction to be unuupoxtant ‘we require tej) > t, Values of t,"/t are given in - L

©is that heat conducted rapidly downstream is wasted since it cannot contribute to the =~
. development of thrust, and hence represents an inefficiency. At the higher temperatures, .~




around and start to go back around the outside of the field coils. We shall take an iterative
_-approach that, in the first instance regards the plasma as highly conducting, but in the next
~instance calculates certain effects due to finite resistivity. The physics of the detaclunent

o process that we shall explore consists of the axial cross-field velocity of plasma, as allowed

"+ by the presence of resistivity, and as driven by the axially-directed centrifugal force on the .

- plasma when the plasma {as a good conductor) attempts to turn around and follow the

~.- field lines back towards the vehicle.

The derivation is as follows. The azimuthal component of the complete Ohm’s law
(including Hall and dla.magnetxc terms) for the case of teadx ax1synnnetn c flow is snnply
(MI&S umts)

VB, +V.By=nds . (Lan.

~In the exit region of radially diverging magnetic fields, B, < B,. In fact, we shall L

S concentra,te on the regionnear the maximum axial extension of a field hne whexe B < 1‘3,..l Sa e

’Iherefore, Eq (I 1 1) shall be taken a.pploxnnately as,
V,By=nls - AT

At this point, we shall reduce the miodel to construct a simple physical picture of
what is going on. Consider a strip of resistive metal, having resistivity n and density p,
infinitely extended in the y-direction (representing the azimuthal direction 8), with a small
thickness A, in the, z-direction, and arbitrary height L, in the x direction (representing

~ the radial direction r). Imagine that this strip of resistive metal is heing pulled across a

‘magnetic field B, (representing B,) by a steady external force acting in the z direction,
- Let F, represent that external force, per unit (x,y) area. We shall identify F, shortly.
- “Moreover we shall take the electric field Ey = 0, because Ep = 0. Observe that the-axial
magnet:c force actmg on this resistive metal strip, per-unit (x,y) area, lS theu

(J'x B);A, = -JmeA, ='=.'45V;B§A;, I (L.19)

" ‘which is opposite to the direction of motion caused hy the force F,, (Here, we have invoked

 Eq. (1.18) for Jg = J,.) The equation of motion of this strip may now be wutten as tollows'
) uotmg that pA. is the 1nass pm unit (x,y) area, -

o
(8 G = P~ V20 (1.20)

The solution of this equation has the form-of an expoueutml approach to a final aleaclv

. velocxtv. That is
. ek,

V= ",:(fc‘nal)“- T ety ). i (]'21_).’

The time scale to approach the final velocily- proves to be given by -

1)71(0. a'lt}
tu;np (.s
o‘(ein)
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- -As an equivalent expression, one can also write

ta : ) -
; (A) , . T .
. R exit

"

© " where ¢ 4 is a radial Alfvén time, and R%A) is a magnetic Reynolds number that is defined

using the Alfvén speed. Here, the resistive dilfusivity, D, = ;’%, and the Alfvén speed,
Ca = (B?/ugp)*’?, are evaluated in the exit region of the nozzle. The time scale for
this transient phase can be fairly short. As an example, consider the following moderate
" parameters that might characterize the hydrogen plasma in an exit region: n =~ 103 em™3,
T =1eV, B~ 100 (fauss. Then, the transient phase lasts a time ., =~ 2 % 10”;7‘;’869._"
“The final axial velocity quickly becomes relevant for ¢ 2 £esp, and is given by ~ v

: Fan

Vigrimopy = —20 (1.3, -
- z(fmal). A;(Bg//.to) (— V " )

At this point, we arrive at a crucial feature of our model. We now identify the applied
“force density as the centrifugal force density exerted on the plasma as it tries to follow the
field line “around the bend.” This is the process whereby the axial plasma inertia induces
- the plasma to coast resistively in the axial direction across the radially diverging magnetic

field, e : : | |
‘Ei =, S T9 |
exit :

Here, p and V| = V, are the exit values of densit-y and flow velocity as computed in the
“ideal MHD model (see Appendix A), and R, = o is the representative radius of curvature
of a magnetic field line evaluated at its faxthest axial extension.’ Aftcx subst.xtutmg (I 24),, ’

mto (I 23), one finds . , S \
‘ ‘z(fmal) ‘ll ’ ( Dt) ) » : V ry
| || C 2 . .}?‘e V|| , ‘ o : (1.20) '
enit et . .

Now, it.can be demounstrated that, to order of magnitude,

W A, |
Crz ~ mﬂﬁ ' - ’ (1-26)
crit ’

where A, and Ap ave the areas of the nozzle exit and the nozzle throat respectively and
Bo is the value of the plasma Dbeta in the throat of the nozzle. Therefore, to order of
‘magnitude, we can write (1.25) as o

A B |y | . 9Ty
Vit finat) [Aoanm]‘"' - | (~I',"").f,

- where we have defined a magnetic Reynolds number in the exx( xcyon by R,,m,,,, =

. (R Vu/Du)emt

-




Note that this model cannot be applied for arbitrarily small Reynolds numbers,
R, — 0, becanse then the transient phase would last for an arbitrarily long time, [see
Eq. (1.22)], aud thereby preclude consideration of the final asymptotic velocity. The
qualitative conclusion from (I.27) is that axial plasma inertia can indeed axially drive
- the plasina resistively across the radially diverging magnetic fields, even with a velocity
- ‘comparable to Vjj, provided that the magnetic Reynolds number in the exit region is not .
~ too large compared to unity, and provided also that the beta value in the throat of the
-nozzle is not too small. _
So far, this result seems encouraging. It appears that if one can arrange the
‘upstream parameters so that the downstream magnetic Reynolds number is near unity,
-then detachment will occur with the actual (detached) exit velocity (specific impulse)

' ‘maintained near the predictions of ideal Aow. But further examination of this process'

. leads us to a view which is not so sanguine.

To show why there is still cause for concern, note that, from (1.23) and (1.19), the
magnetxc-(h ag-force density is precisely equal in magnitude to the applied- fozce deusn;y,
f01 tnnes larger than the tune for the trans:ent phase. ’Iha.t is ~ :

7 JyB, = E = /)-—-* . | : (I.ZS)

exit

~ This is an axial drag force density (force per unit volume) exertéd on the plasma by the

magnetic fields (and ultimately transferred to the magnetic field coils on the vehicle). To
" get the total drag force, we must multiply the expression in (I.28) by a volune associated
with the exit region of the nozzle, This volume has to be on the order of (A R, ), where 4,
is the area of the nozzle exit and R, is a representative radius of curvature of a diver giug
magnetic field line. We conclude from Eq. (1.28) that the total resistive drag force is given,
thewiore, to order of maguitude, by '

(J X B):(Ae-Rc) ~ (/’VII )cm'tAc = (PV“A_)emitVll(ea:it) = A;lvll(emit)— . (I°29) ‘

Thus, although we have made no attempt to ascertain the exact numerical factors here,

" the ahove calculation indicates that the resistive drag force will be roughly the same as - -

the ideally-calculated thrust, in our iterative model.

This qualitative argument suggests that, within the axisynmmetric flow moclel, resistive
l g ) ) ¥

detachment of plasma does not really solve the detachment problem, because the intended
‘ tlu‘ust will be sul)stantiallv cam,elled by the reqiative dmg on the phmm by the nozzle

‘(wﬂhm the v.;luhty ot‘ 1he modol) '.l hl% quahtatwo m‘gumeut nved.s o be dxed\e d

" quantitatively by use of a 2-D resistive MHD simulation,

Three possibilities for really solving the detachment problem are as follows. ,

i) Resistive Raleigh-"Taylor lnstability. Non-symuuetric plasma motions indueed by
) .

wntntug,al forces: (smulm‘ to the physics discussed abovc) uug,ht lead to more eﬂcctwe. o

T mmmmr et T EH Te ST W AT SR s e

* Throughout the “oxit volume,” there will be a distribution of magnitudes and divections of these
“forces, which will usually have both axial and rudial components, But, point by point, the axial component .
of the upplicd foree density will be balunced by the uxinl component of the mugnetic foree density.
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< . detachment of plasma in the form of flute instabilities. 3-D resistive MHD simulations
- could address this process. A similar process at the nozzle entrance is considered in

section d (convective transport) helow.

Recombination. At the low exit temperatures, recombination of electrons and ions
conld occur to the extent that the plasma would revert to neutral gas and be un-
coupled from the magnetic fields, However, this process might well be jeopardized. .

- by the precipitous drop in plasma density on the downstream side of the throat.

Quantitative calculations that address this possibility are indicated. A resistive 2-D
MHD simulation with capabilities to model ionization and recombination (analogous &

to reactive fluid simulations) would be required.

Utilization of Sharp-Boundary Profiles. 1f the nozzle input condition could be
- arranged so as to have a core of field-free plasma, transversely contained in pressure

_ balance by an external layer of magnetic flux, then, to the extent that this condition

“can be maintained downstream, the necessity for solving the detachment problem

becomes obviated, Instead of a field-free core plasma, one can also consider here
a core plasmoid containing closed maguetic field lines, separated from the open-line

“magnetic guide field by a magnetic separatrix. An example of such is the Fiekl

Reversed Configuration for which axial translation has already been demonstrated.®
The condition recuired for maintaining a semblance of the sharp boundary profile
downstream can he obtained from the observation that the initially separated plasma
and magnetic guide field will inter-mix by resistive diffusion. Because this is a diffusive
process (with 3 < 1 in the interface region), the diffusive mixing depth, A,, can be

estimated from the expression - ‘
. An = \/ Dnt; ’ - (1.30)

where the axial transit time, t, &= (,/v;, is the time during which the core plasma is
in resistive contact with the maguetic guide field at the nominally sharp houndary of *

-separation.
‘The houndary will remain “sharp” provided -f € 1, where a, is a typical radius of

‘the plasma near the tlnoa.t of the nozzie. Usmg Lq (L 30) to examme thls ra,uo of -

lengths, we find
A " D " ‘,

—

‘ *“p , ety “a

Caay

Thus in order for the sharp houndary configuration ta be maintained duving the time

“for an element of plasma to flow through the nozzle, it is necessary that the magnetic
- Reynolds number be large ('ompm'o'd with the aspect ratio of the nozzle, o

- All of the plasma that becomes lost in the vesistive mixing layer, A, will he subjeet
. to resistive drag at the nozzle exit, as discussed garlier, and will therehy detvact from
. the ideal thrust within the model of axisymmetvic flow. ‘The visk of using this shavp

boundary approach to solve the detachment problew is that the pl(\sma then becomes

. vulnerable to Rayleigh-Taylor mslab:hhes in the uoza!e =nh‘.mw ug,wn. !aee smtxon

s “Goswcctwe "hmmport v below




. CASE II. THE AZIMUTHAL MAGNFTIC NOZZLE[ _ (0 Bo,O)]
For convenience, we repea.t Eq.’ (1.2) in thg fq_gm

1 | n BP J, -,c'é)P.E w
Vi, ~Vg, D, V.v —_—— = (1.32) .
n(V1 B) *(32/8 (P v * o )+ e eBoz (rs2) .
| “where’ D,, = ;27; is the resistive diffusivity, :‘-';'3 is* the V'guiding center -drift veloéitv,

Vg = cE % B/ B?%, and we are using cgs units. We shall explore the consequences of

AL,
Now the magnetic field lmes, B Bgﬂ are quickly moving downstream, so-that Vg,

- on the ¢hs of (1.32) is not a dominant drift of the field lines*In fact, Vg, must vanish

at the highly conducting inner and outer electrodes, because E; =0 at those electrode

N

Eq. (1.32) for a coaxial couﬁguratlon of: lengtlx €, radius r, and coaxial width A, with "

* surfaces. Consequently, the Chs of (1.32) represents radial mass transport across & inagnetic -~

field which itself has no significant radial motion of held lines, especially at the electrode -

surfaces.

Now let us consider the driving tertus for this radial mass transport in the azimuthal
magnetic nozzle. Assuiiing that the ion beta value is of order uaity (see Appendix D), and
knowing that the axial flow is both transonic and trans-Alfvénic (see Appendix B), it can
he demonstrated that the radial inertial portions of the 12, term are small compared to
the radial pressure gradient portion, in the ratios (»;/¢.)? and A" (rei/' ", ), where A = i

is the aspect ratio of the nozzle, with A heing the radial space between the inner and onter
electrades. Thus, the ion gyro-radius is being assumed smali cmnpared to the axnal scale ’

length of the nozzle, an easily satisfied condition,

Thus, when the D, term is the dominant term in Olu's inw, By, (I 32), tlw o
- ~importance of radial mass transport depenrls upon the vadial pressure gradient and can
* be examined just as for Case 1, The vesult is that the chavactevistic tinie- ior mdml loss ot

' :plmum part.ules, m Hw el mb of the mual mumt tuue. ran, be wm{vu a8 -

J IJA
' fi‘},whew R ig the umgnntlc lievnold& numhm' delmvd xw

AL

1:,, Sl

SE wnh the axiel flow vclucuv Vi -on the aulu‘ o v. o ¢ 'J» (Ax i (‘nw i thsis smnlt i
& [Lq. (L 33)} was obtumcd m.summg, umtmm .md equal bpult’stcmpl‘l hm*s, ami W p.uulmhe

N T MRS MR L L TVR T Tl - v ean

. *That isy the mpm power (m Mi\‘wglmits_ now), W, emtmmmlu to the Pcwnum. veetor ]l@, U;;
L times: the wren 2mrA. This iv mm\ulvnrw an wxinl oy of nagnetic enerdy, (,_!whg Yo, with hult .
s rexpended in fillng the. mlw with mngaetic eneriy wnsd hall dnm work prixhiung the danchieting plaiinn mu_.";; e
L :fnluﬂml wnllu Wluo:lly ‘Bg ?‘ U,-/ 139 ’lhe \elod[y H;,- clmm iot ehter l!nn puhwi at le am W " Bewa T

a0
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* density profile that vanishes at the inner and outer electrodes.) This result, Eq. (1.33),
"-is practically the same as for the meridional configuration. Thus, when the resistive term
“dominates Ohun’s law, radial mass trausport can be reduced to a small eflect by working
at high magnetic Reynolds numbers, R, >> A.

\'"_"‘Zl_‘f:azmmthal magnetic nozzle. It can be demonstrated that the ratio of the J term (the Hall-
- ~t;e:rm tothe D, term in (L 3'7) has the following dependences, : '

D,B(0n/or) AR (£.35)

_ where w,, is the electron gyro-frequency in the By magnetic field, and v,; is the electron
" momentum-transfer collision frequency due to Coulomb collisions with the jons. Also,
A = (/A is the aspect ratio of the nozzle, and 3 is the total plasma beta value due to
the sum of the electron and ion pressures. From the result (1.35), we conclude that when. .
_ the elecirons ave strongly magnetized, wee > 14, the Hall term can play a much more
important role than resistive diffusion as regards radial mass transport.

We also note that the last term, the (8P, /8z) ferm, is of order 3, times the Hall term,

~ where 3, is (87nT./B?). From Appendices 1) and F, we can infer that g, = 8; =~ 1.

“In the Table 1.8, we present values of the electron (ion) maguetization parameter

assuming that Te = T,, and 8 = 1. Thus, for given n and 7', Table 1.1 proviles '
. a corresponding value of magnetic field. Vor v, we use® vy = ne?/mge, with o =

However, the resistive term does not necessarily have to dominate Ohm'’s law in the '

o 3 - ]
108735 for (A = 10, This value is somewhat more accwrate than the earlier = -
“expression. derived in (LAY and is sufficient for pteseut purposee For wee we use e & 07

S 107 gmye = 48 % 107 esuy wp, eB{me(‘ %107 Bianas = 1.6 % 10"43::“;,..

““"Note that (wee/ve,) :eaies ns Tz/n’/"’ ior hxed betn. (ln both Vei. .md wc,, we. teol\:.

M R X 1073 gm) :
* From Table: 1.8 and By. \1.3") we see tlmt in the 1 e\’ mng,,e of mnpemtnws, tlw‘"

elections are essentially sninagnetized, so that vesistive diffusion determines radial mass”

| -"':‘j'tunm)ort. However, at higher temperatures, the veverse is genevally true, For example, -

- in the 10 eV range, the electvons will-be slmnglv maguemed for o lurgc range of number.
2 densities, (Appendix B shows that for ions iu the range of 156V encigies, the electronscan
7 be heated up to this temperatuye by equumrﬂtmn.) We shall now examine the chavacter -

= that the elech‘ma& are strongly muguetwed

_-’(l{mmm addressing the gy ~ 1 case will follow.) ‘ﬂwn, the transport of plasina particles
2 pwoves to be completely ditferent for electrony andd ions, Bleetyons are simply stuek to

-~ of vadinl mass transport in-the azimnthal nmgmhc uo..zlc when the pm'mneters are su«hﬁ S

- We begin by assmning that the elevtrons ave. lnwﬁhetmnurdvvm et o a-nm)le p:cture'

¢ the axindly-dvifting Hy field hines’ atid vouvected downstrenm. On the othee hand, v this .0

S ‘ff,fomu for stwm,ly nuyuhzud lu\vam eivcuum.-':

n(l L.» - tw) i ’; R | U 3“)--

Creduneed model, the radial fon: transpert. is detmnmed iwm Lq. (l 3’?') m tlxe foilowmg E

- 3:"-an- Vip it Hui r.n!ml mmgmnwnt of ﬂw ﬂtmi vclucm’ al tlw pi.msm. vlmh i pmuwaliv* S

> "ﬂw radml ﬂuul wlm::lv i llw fous. - ‘llma, llu: puwus cmimdml n: Ltp (I Jh) is tlmt




TABLE 18 Values of %22 () for T, = T; and § = 1 (hydrogen ions)

TleV]= 1 10 100

n (em™3) = 10" 197 (.065) 197 (6.50) 19,700 (650)
1014 0.623 (.0206) 62.3(2.08) 6,230 (206)
1018 0.197 (.0065) 19.7 (.650) 1,970 {65.0)

10 0,062 (.0021) 6.23 (.206) 623 (20.6)

T LA 197 (.065) 197 (6.50)
0% 0623 (.0206) 62.3 (2.06)
10° 10,197 (.0065) 19.7 (0.650)

* Slight inaccuracies in this table result from our use of an approximate evaluation of Ve;. However, Vei
itself is‘only accurate, in ptinciple, to order ((nA )™ -1, ‘

the ions must carry all of the radial current across the magnetic field because the low-heta
‘iagnetized electrons are unable to do so. (This statement applies ouly to an axisymmetric
idealized model of the discharge wherein localized arcs or spokes are not the principle
mechanisms for determining currvent paths.)

The radial distance traversed by the ions in carrying the radial ctmeut is V.t wherel,
is the axial transit time, Thus, if V,.¢, is small compared with 4, then radial mass transport
will be a small effect in this case of strongly magnetized dectmus Setting V', = J./ne,
using Awpere's Jaw to express Jy iu ters of Be, and using {,/C4 for i, we find that - . -

Vit. c T -
e B e (437
A wpeA A : i
for ion beta values near unity (Appendix D). (Here, wy,; is the ion plasina frequeney, )
Thus, the condition that radial mass transport should be a sisall effect, Within the
- axisymmetric model of the coaxial a.zmmthal nozzle, 1eduws to the xeq\memmt tlmt

323' 1, 1 I (13%-;?'{:

in the case of strongly umguoh/od low-beta electvons. The ion gyro-t .achnsslmuld he mm\ll "
compared with the transverse dimensions ol the pl.u.mn : :
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Now, if one returns to Eq. (1.32) allowing for finite 3. electrons, still strongly
magnetized, one has

J. ¢ 9P,
n(Vin— Vgr) = o

The meaning of the electron pressure term is that the axial non-uniformity of electron
pressure causes a lack of cancellation of neigliboring gyro-orbits (evident from the form
' gg g") leading to a radial diamagnetic fluid velocity of the electrons. Including this term
only changes the estimate of radial mass transport by a factor of order |1 4 3| depending
on the direction of J.. leuce, the requirement (1.38) is still the fundamental restriction
for radial mass transport to be a small effect in azimuthal magnetic nozzles in which the
. electrons are strongly magnetized.

b, _Heat Transport. The preceeding account of radial mass

(1.39)

" transport from resistive diffusion exemplifies certain general features of diffusive transport.
-+ -+ Given a transport process for a quantity Q (e.g. for Q representing mass, momentiun, or

- thermal energy) having diflusivity ), one can find a representative time scale for loss of
 Q from the core plasma to the lateral wall of the nozzle as tp ~ a?/D, where “a” is a
characteristic radial dimension of the nozzle. If the condition tp > ¢, is satisfied, where
t, = (. /V, signifies the axiai transit time of an element of plasma moving with velocity V,
through a nozzle of length (., then fractionally large transport losses of Q will not have
had time to occur. This desired condition can be expressed as

e A <1 o (1.40)
tp Rp
where A = {, /e is the aspect ratio of the nozzle and Rp = V,a/D is the Reynolds number
for the given transport process, Thus, the Reynolds number for heat transport should -
he. much lai'ger than the aspect ratio of the nozzle in order that radial heat loss should
constitute a minor effect,

Although an element of plasma may lose only a small fraction of its initial thermal
energy duving axial transit, due to fulillment of conelition (1.40), the uctual heat loading of
the lateral walls may be considerable, depeu(lmb upou the plasma parameters and nozzle
_dimensions. Whether such heat loading is tolerable in particular cases must be assessed
by engineers en the basis of the duration and number of burns required by a particular

‘mission, This assessment must be self-consistent, since the duration and number of burns

~ will also depend on the plasma parameters.

In this report, fractional energy losses and concomitant heat loads on the walls will
be estimated as consequences of choices of the plasma parameters, bui no formal value
- judgements of the wall loads will be rendeved here, ‘A convenient framework for making

_.such estimates cai be developed as follows. : :

- CASE 1. MERIDIONAL MAGN&TI‘I(’ NOZALE

e Clonsider the ratio of the total lateral heat loss rate, H 1+ to the total axial kinetie
~ - power flow thmugh the throat of the sozzle, Py, (From Appendix A, we note here tlmt _
e Po N ll’ wlww P iy the kmehc po\\er ﬂowm;, out of the nozzle exit.) Wehave

g,

l?o_ c 2'"!‘ ) (1.41) .'
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" “where D is the thermal diffusivity (D = &/n, where « is the thermal conductivity),

E . A = 0./a is"the aspect ratio of the nozzle, and V; is the flow speed through the throat

- of the nozzle. 'The particular expression for D will depend upon the parameters of the

; o - plasma, for example, upon the degree of maguetization of the electrons; and it will depend
" » . upon the behavior of the profiles of density and temperature near the walls. Here, we shall -
" just work with a “representative” value of D. Note that, from Appendix A, in the throat

©. region of the nozzle,

L PN (1.42)
m; m; E .

; 030 = Vo2 =7-

for T, =T; and v = g
R Now, taking a parabolic temperature profile as the genemc example ofa general dlffuse :

: proﬁle, one ha.s
' T=T(0)(1”7'/a )s

" where T\oy is the value of T on the centerline. Then, applying Eq. (1.42) on the centerline, .

the square of the velocity of fluid through the throat is Vi = -;z-(—_”, and one can then

compute the ratio of lateral heat transport per particle to axial kinetic power _per par txclg

. The result is _ pler 5 4D1 41 t
: D /:h=_“. (1.43)

2m,V 3alp T3 RD

wherein the Reynolds number for this txansport process in the throat region has been

introduced in an obvious manner.
Using (1.43) in (1.41), we have

SE=clo g

This expression for the fractional loss of power due to radial heat transport is in ualitative
agreement with the estimate of the time ra.ho (t2/tp) used to derive the desired condition

(1.40).
In terms of the final kinetic power at the nozzle exit, P, Eq. (1.44) can be written as
’ 2 A
Hy=355-P. (I.440)

Thus, the fractional loss of heat relative to the exit thrust power is essentially (4/Rp).
To estimate the heatl load on the lateral wall, we use Eq. (1.43) in the form

| AL 4 1 MV} ;

| e I e et wae o —e [4

arl, T 3Rp2 Y T 3R 24,
a4 1P 1L P .
K o I 3 RD Ao 5 Rn A() (}.4‘))

where ng is the number density of jons m the throut vegion of the nozzle, and whcxe Ay is
tlae area ot the nuule tluout. : : :
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Here, we recall that values of £ [M %) may be obtained from Table 1.1, Note b, for
_many cases of 3 = 1 plasmas. Hence, an estimate of the heat load on the lateral wall in
[“151‘,‘ | can be obtained simply by estimating the relevant Reynolds number and dividing
it into the exit thrust power density (defined in terms of the area of the throat). The
Reynolds number is obtained by choosing a transport model, plasma parameters, and
nozzle dimensions. We shall now carry out such a procedure. Although it is not necessary
to use the Reynolds Number approach to calculate the lateral heat fluxes, this approach
provides a convenient and natural way to connect these heat fluxes with the corresponding
thrust power densities.

Classical plasna transport presents a lower bound for transport losses from plasmas.
From Blagmskn , there are two types of contnlmtxons to the electron heat flux when |

. wce >> Uen

3 T . o
q —-0(1nTu + = n(bxw#) - ‘ 1.46 ~a)
1 3 (el ee) (_ . (146 -
G = ~K{ViTe = KL VaT. - Ec—ﬁn(z} x VT,) - (I46-0).
(where = ——J with J' being the current densxty) -and there is a contribution from the '
~ ions when we; >> Viis : :
- { 5 07 .

where b = B /B and || and L respectively refer to. directions along and transverse to the

local magnetic field B. (Here we use cgs units.)
In these equations, to sufficient accuracy,

. 3 1,2 ' ]
2 ch ’ .
2
5 02 [ 1 -
T sl Bl I C (14T-b)
2 . Wee . -
~and . . _
, in .
h:il ~22n-- : (147 ~¢) -
Ui
i SN -
Vip \Wei
where v’", = 21¢.i/Mme.i. In evaluating these quantities, we shall use? v = m a, with

me = 0.9 X 10727 gm and o = 0.9 x 101 T2, for ¢nA ~ 10. We also note? that

. ( -.')3/2 ( e )1/2
i Ve T oy '
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In BEgs. | (1.46), the vy = Jy/ne term vanishes for both configurations under

consicdleration. Moreaver, the b x VT terms can never contribute to “radial” canling
of plasma.? (In the meridional magnetic field case, this is so because VT has uo
azimuthal component. In the azimuthal magnetic field case, this is so because the
coaxial metal electrode surfaces cannot support a substantial longitudinal temperature
gradient.) Finally, it is important to remember that when either electrons or ions hecome
un-magnetized (wee K Vei Or wei € v44), thermal conduction in the unmagnetized species is

isotropic and is determined by the Coulomb-collision mean free path, so that the expressmn .

for the heat flux ¢ reduces to just the s term for the unmagnetized species.
Therefore several cases of thermal transport must be distinguished depending upon

“the degrees of magnetization of electrons and ions (sce Table 1.8). When the electrons are

un-magnetized, radial thermal conduction is determined only by the rcfl term, and the ions

° are unimportant.*
- When the electrons are magnetized, electron radial thermal conduction results from

the bx @ term and the & ¢ term. It can be shown that the former is of order (3 5—) times the

" latter. Hence, the former (b x i) contribution dominates electron thermal conduction when

the electron beta is very small against unity. Moreover, when the ions are magnetized,
ion radial thermal conduction is due just to the &' term. Since the &9 term is of order

(me/m;)Y/? Kk, we see that electron radial thermal conduction is generally small against
‘the x contribution from the ions. (The exception is when g, < (m, /m,-)l/ 2~ 2%, in

which case the b x # thermo-magnetic term from the electrons is competitive with the Kh
terra from the ions. We shall ignore this possibility in the scoping study, but it should be .
monitored in a more detailed transport study.)

Finally, it is possible for some parameter ranges that the electrons are magnetlzed

(wee > ve;) but the ions are un-magnetized (we; < vi;). In this case, the radial thermal "
conduction is dominated by n". ~
In general, we shall apply the magnetization parameters in Table 1.8 to calculate the
heat diffusion Reynolds nwunber for the different regions mentioned above, In so doing, a
characteristic radial distance “a” for the nozzle dimension must he assumed. We shall set

“ @ =100 cm. It is a trivial matter to try any other value of
_w1t.]1

“a”, since Rp scales directly

. In this connection, we also note that for well-confined plasmas supported in
pressure-balance by an external magnetic field, with a boundary-layer thickness A,, as
opposed to general diffuse profiles, the lateral transport fluxes will be larger, and the
effective Reynolds numbers will be smaller, in the ratio (A,/a). For Rp, we shall use

3 ”

v :
Rp = —— . 1.48)

D=y (1.48)
where v; is the jon thermal velocity (which is sufliciently close to Cy, the tlow velocity in
the throat). We note that with m, = 0.9 x 10™%7 gm and m; = 1840 m,, the themml

velocities are given by vi(£*) ~ 1.4 X 10° 7, 3 and ve(55h) % 6.0 x 107 7‘(1/3)'

* The exact transport coeflicients depend in detail on the degrees of magnetization (Wee / Mei) und
1] 2 1] 1] . £
(wei / i), ancl ave very complicuted.® In this scoping study, we ignore these details, but they must he
colculated in any thorough transport study of any specified design,
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For unmagnetized electrons, we have the dominant radial thermal diffusivity, -

5/2
3 v2 T m?
D=Df=>"¢ n19x 10— [T,

1.49 —
2 Ve; n{em=3)" s (1.49 a)‘

For magnetized electrons but un-magnetized ions, and with T, = T} assumed, we have

_ 52 J5l ,
] i 2 e
.D=Dﬁ=DﬁC£) \/m.=QMme. S (1491

Tc . my

(Temperature ratios are important here, and (T;/T.) should be taken into account in a-
more detailed transport study.) - : ‘
.- When both species-are magnetized, we take

D=D1=1G3>Dﬁ R (149~c) -

"2 Wei ,

" and use Table 1.8 to obtain the ion magnetization parameter.

To show how this works, we construct the table of radial thermal diffusivities here,
Table 1.9, for a 8 = 1 hydrogen plasma, showing the dominant thermal diffusivity for each -

set of parameters Noting that there is also a thermal flux associated with radial mass. =

. transport, with an effective diftusivity 2‘D,,_ when T, = T; = T and 1 8" R %22, we also -
- show %D,, parenthetically when it exceeds the thermal diffusivity, D,h_.,,,,,
In Table 1.10, the Reynolds numbers corresponding to the thermal diffusivities in Table

L 1.9 are displayed, for the radial length scale a = 100 em. The fact that these Reynolds
- numbers are much larger than unity means that the heat transport losses are negligible in

comparison with the thrust power; see Eq. (1.44-a). But note that the Reynolds numbers
associated with 2D, are much smaller in several cases, indicating that ihe thermal flux
associated with mass transport can be important for 8 = 1 plasmas under some conditions,
- In Table L.11, we shall apply Eq. (1.45). The thrust power density is taken from
~ Table L.1 (footnote 1), and the result is divided by three times the Reynolds number

o (using a = 10% ¢m) in order to obtain an estimate of the lateral heat flux according to the

classical plasma transport model. The thermal flux associated with radial mass transport
is shown parenthetically when it is larger than the heat flux from thermal conduction. -
We see that, in most cases, the heat flux due to classical heat t-ransport is less than
L(MW/m?), and in only two cases does the heat flux exceed 100(MW/m?). However, we
‘note that tlle thermal flux due to radial mass transport is substantially larger in sever al
cases, producing two additional cases in excess of 100 MW/m?2,

"CASE II. AZIMUTHAL MAGNETIC NOZZLE

The parameter survey for this second configuration is not carried out here, but it must
lead to results that are qualitatively like those of Clase 1 for thermal conduction. The reason
is that, according to Appendix D, the ion beta is of order unity, and concomitantly the flow
through the nozzle will be both trans-Alfvénic and transonic. These were the fundamental .
- asswmptions that led to the results of Case 1. Of course, the Reynolds number in Case 11 .

37




TABLE 1.9 Radial Thermal Diffusivities (“" )
from classical transport theory, D:perm,
~ for a “beta = 1" hydrogen plasma with 7, = T;.
Parenthetically is shown 31D, when it exceeds Dyjerm .
[See Note (a).] {nA = 10 is assumed.

TleV] = 1 0 100
nlem=3) = 108 Dj=57x10° . Dj =21x10°
. - T 1 <l
: (12 x 107) -
10 Di=19x10° DY =21x10° o
- (L2x107) L
10 j=19x10° Dj=18x10° Dj=6Tx10*
(1.2 x 107)
W0° © Dj=19x10' Dj=18x10° Di =6.7x10¢
(L2x107) - (3.8x10%) '
1017 = 18x10° DY =6.7x10%
' (3.8 x 10°%) ‘
10'8 o =60x101 . Di =6.7x 10¢’
‘ | (3.8x10°%) - -
1019 o | Di=60x10° Dj=57x10%
(3.8 x 10°) ‘ -

Note:
a) The ratio of the thermal flux associated with mass transport tc the heat flux-from thermal conduction,
forB=1,Te=T;=T,is( l)., )/ Diherm. tlmes( 8"’/
b) The blank spaces lie outs:de of the flu:d~plasma model, elther because (nA is too small (at low
* temperatures) or because the mean free path is too large (at high temperatures). '

must be defined in terms of the coaxial spacing hetween the inner and outer electrodes,
“A. To the extent that A is closer to 10 em than 10? cm, the Reynolds numbers will be
. smaller and the wall heat. ﬂuxes will be larger by a factor of ten.
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TABLE 1.10. Reynolds Numbers for the Thermal Diffusivities
 in Table 9. (Here, v;(<2) = 1.4 x 10° T,7, and a = 100 cm)

(See Note.)
TeV]= 1 10 100
nlem=3 = 108 245 211
S (11.6)
1M T 211
(1)
- 10% 737 246 - 20,900
- (11.6) ‘ .
1016 7,370 2,460 20,900 "
- (11.8) - (1,160) -
1017 24,600 20,900
» " (1,160)
FUL I 7,380 .20, 900
(1,160) ’
10%2- _ 73,800 - 24,560
S (1,160) -

Note: Reynolds Numbers due to the thermal flux associated with radial mass transport are shown
- parenthetically when they are smaller than the Reynolds Numbers for the thermal diffusivities in Table 1.9.

A A qualitative difference with Case I as regards thermal conduction would arise in the
event that D) is the dominant diffusivity when 3, ~ 1, but is no longer the dominant
diffusivity when 8, S /m./m;. Such situations conld arise in energetic operation of
coaxial plasma guns (~ 100 ¢V ion energies) wherein the electrons do not have suthicient -
“time to heat up to near the ion temperature (see Appendix E). This situation should he
monitored in a more detailed transport study of the azimuthal magnetic nozzles. Finally,
. it is important to note that the thermal flux associated with radial mass transport should
“ ~ be considered in azimuthal magnetic nozzles. This will be quite different than in the
meridional magnetic nozzle when the electrons are magnetized, as discussed in an eatlier
section on mass transport.




TABLE .11, Estimates of Lateral Classical Heat Flux
and Thermal Fiux due to Radial Mass Transport
" in (MW/m?), from a 8 = 1 Hydrogen Plasma for a
Nozzle with throat radius @ = 102 cm.
< (See Note.)

T[eV] 1 10 100
CnlemT¥ = 108 25x 1074 ME) 92x 1078 X
: S (5.3 x 10™ 3) ’
10 - 84x107% 0 92x107% X
(5.3 x 107%) R
1018 84x1073% - 79x107! 29x107}
' (53 x1071) : ,
10 84x107  T9x107! 29
o (83) (L.7)
1017 X t9x107t 29
- 1)
¥ . X  28 290
' .(165)
1 X 26 - 2500
| (1650)

Note: The thermal flux associated with radial mass transport is shown parenthetically when it exceeds the .
radial heat flux due to classical thermal conduction. :

Co_ Bohm Transport. When the electrons are magretized (wee >
 vei), an additional channel for cross-field transport is provided by electrostatic tulbulence
First discussed by David Bohm™ who proposed a diffusivity Dpopm = m g, many
subsequent attempts were made to explain the origin of such a diffusivity. Bmgmsku
(in his Chap. 3) provides a qualitative explanation with & dynamical basis, and finds
Dgohm ~ -3« A more systematic and detailed explanation of Bohm diffusion has heen

set forth in the book by Ichimaru™. He finds that when the elecirons are magnetized, low
frequency electrostatic turbulence across the maguetic field produces a diffusivity given by
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(for strong electrostatic turbulence),

1 (L) (T, )3’2 m; |

D R e et | 1 e n—. : 1.50

Bohm = gom eB + T, Me o ( )

_ - The expressxon is valid when a certain parameter, «*, is much larger than unity. The a*

.- ‘parameter is given by
. T A w2 ' :

1 2 - L.51)°
( F Tz) ?e’ ‘ A )

f where T, and T; are respectively the electron and ion temperatures, and wp. and we.
f 4 , . are respectively the electron plasma and cyclotron frequencies, wy, = (llm'ne2 /m,,)ll 2 and
‘\ N © . Wee = eB/mec, in cgs wnits. If we asswme that T, = Tj, the condmon a* > 1 cm be
\ R

\

- . - reduced to - | _ L
- \. 7 - - - 'l,e . ] .
. : - : -(I.82) . -

\ | where v; is the ion thermal velocity, 8 = 16mnT/B? is the plasma’s total beta, a.nd cis .
\ : the speed of hght For hydrogen pla,sma, this can be written as .
)
1 a
Tiev) < 10°8 . (1.52-a)

This condition will easily be satisfied for the cases under consideration in this report

(B ~1).

Yor hydrogen plasma, with T, = T;, the Bohm diffusivity in Eq. (1.50) hecomes

DBohm ~ 0. 2"% ( (153)

" The Bohm dlﬁusthy is tabulated for 8 = 1 hydrogen plasma with T, = T; in Table 1,12.
It can be written in practical terins as :

2

cm Tiev)
Dpohn (—"-) ~ 2% 103,
" § B(Teala)

The magnetic field values utilized here for 8 = 1 plasmas ave given in Table 1.1,

The Bohm diffusivity has a meaning for both thermal and particle cross-field
diffusivity, (Although the electrons ave the formal participants in this process, the ions
must leave the plasma at the same rate, to maintain overall chatge neutrality.) We recall
that the particle diftusivity due to classical Coulomb collisions was given by -

. 1
Dparf = '2"/-”):; _ o (1.54 - q) o
where ) ) " )
¢ (i VI ¢ S Vi A
Dy=--n=- e gy mm AR - (1.54 - b).
! 2 a 3
4 4r Wie Whe Be - o i




~ TABLE L.12. Values of Bohm Diffusivity (‘"‘ yfor =1
Hydrogen Plasma (when electrons are magnetlzed Wee = Vei)

TleV] 1 10 100
CmfemT¥ = 108 T.0x 10%(22) T 2.2 x 10° x
BE UL - 7.0 x 10° ; X
0% 22x10° TOx10° *
' Ca ‘ [2.2MW/m2]
e roxiot 22x108 ¢
’ - (6.9 MW/m?)
107 x 22x10* T0x10%
1018 X o 2.2 x 104
10° ' x 7.0 x 103

“Note— Only the 100 eV cases marked (*) are significantly larger than the classical thermal diffusivities

tabuiated in Table 1.9., by a factor of 10 for n = 10*3 em™3, and a factor of 3 for n = 1030 em ™3, The ’

corresponding Bohm heat fluxes are listed parenthetically [ ] for conditions corresponding to Table (1.11).

with 3, = 8T,/ B?, r. being the electron gyro-radius, roe = vg/wee, aud pg; is the
classical Coulomb collision {requency of electrons with ions. lleuce the classical cross-field
particle diffusivity is

1 * < .
Dyare = ég"‘fcvci = 1‘f¢-Veia' (I.54 -¢)
(3

for T, = T, Let us compare this to the Bohm diffusivity interpreted in the mnte‘d af_
‘particle diftusivity. l“wm Lq (l.o&), we have

t"]'
DBohm, = 02 ]) = 0 l:‘;’:; = 0 17‘0 e

| .’lhe ratio of tlm lattm to the former is

Ulioh JU— l?f’q{_g

(Ls8)
DP‘"‘* o My ( v ) A
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which is 0.1 times the electron magnetization parameter. Hence, when the electron
magnetization exceeds 10, ove expects the electrostatic turbulent particle diffusion to -
exceed the classical value. associated with cross-field mass transport.

From the standpoint of cross-field particle transport, and neglecting profile effects,
thie magnetic Reynolds numbers given in Table 1.6 will he therefore degraded roughly by
‘the inverse of the factor ;5( e<) when this factor is large compared to unity. (Note that
the values of the magnetlza.tlou paramneters in Table 1.8 are only approximate.) (Here,
we have used B = 1,T, = T}, so B, = 3.) We present this information on the Bohm
Reynolds number in the following table, based upon Table 1.12. For this tabulation, we
‘take a = 10% cm for the radius, and v;( £*) = 1.4 x 10° T(Ic/‘f) for the ion thermal velocity
as representative of the flow velocity through the nozzle.

To summarize the results of this sectic: - on Bohm transport, we see from Table 1.12
that Bohm thermal diffusion only rarely vompetes with classical heat diffusion in the
parameter ranges considered. Moreover, we observe from Table 1.13 that the Reynolds
mumber associated with Bohin diffusion is sulliciently large in all cases that fractional heat
and mass losses from the plasina during flow through the nozzle are quite small. Note,
however, that the lateral thermal flux associated with Bohm mass transport is comparable
to the classical heat flux (where applicable) and greatly exceeds classical in two cases
at 100.eV. (Compare Table 1.13 with Table 1.11.) We conclude that Bohm diffusion is
generally unimportant in the parameter range cousidered here, However, it is important to
qualify this conclusion with the reminder that the scale length for difiuse profile gradients
was taken Lo be the nozzle radius (at the throat). For sharper gradients the effect of Bohm

diffusion can be siguificantly larger as discussed in the following sectwn under convectwe'

transport [(ii): The Kelvin-Helmholiz instability].

d. _Convective Transport, We have already discussed a form of
axisymmetric convective thermal loss under See. (b); heat transport. There, classical
resistive diffusion produced a radial macroscopic finid velocity that convected thermal
energy outwards. In this section, we go on to cousider other heat loss processes that may
be induced by non-axisytmetric fluid motions triggered by macroscopic instabilities, The
most dangerous MHD-type (i.e. macroscopic) instabilities in a plasma ave those that least

“bend the magnetic field lines, or that don't bend them at all. This is because energy is *

required to bend the magnetic field lines, and so such plasma motions tend to he stable.
A well known example of a stable perturbation associnted with field-line hending is the
torsional Alfvén wave, An example orthogonal to the Aliven wave is the flute pertwrbation,

Flute-type perturbations ave plasma wotions that move the field lines perpendicular to -

themselves withont bending them, or bending them the least amount possible, Magnetic.
“configurations without magnetic shear ave particularly snsceptible to flute perturbations
because then large volumes of magnetic {lux can he coherently wmoved practically withont
lmndmg. Neither the meridioust nor the azimuthal maguetic. noz.alo pussesses any maguehc -
shear, in the “pure” versions of these configurations. o

These unstable flute perturhations prove to be driven pnmlv by adverse pressure

- gradients and “had” ficld line curvature (eg. hot plasma surronnded in eepuilibrinm by

~ field lines that ave convex ontwards), Known as “interchange instabilitie 3," their behavior
- ean be shown to very similar (ahmost identieal) to instabilities of the Rayle u.,h« Faylor type.

. "llus mmlu v wn hc mlerred from: lhc « tmtmus wt lorlh in l'mtllw\ 's dmcussmn of
b. i b .
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TABLE (.13, Values of Reynolds Number and Convective Thermal Flux
(...), in MW/m?2 for Transport due to
Bohm Diffusion in 8 = 1 Hydrogen Plasma

Assuming T, = Ti (Rpohm = P for a = 10? em)
TleV] 1 10 100
nlem™3] = 10 200 200 X
(0.021 M W/m?)
1014 632 X
(0.067)
10%% 2,000 2,000
' (0.21) (6.7)2
10%¢ 6,320 6,320
(21)°
101 X 20,000 20,000
(67)
_ 108 X 63, 200
- - (210)
00 X L a00,000
: ' ; S (670)

Only cases where the elecmms are magnetized (wep i u.;. ) are meaningfyl for h’y‘,h " For fixed beta. I

‘ we note the scaling, Roohm ~ & ,7, . 50 that Il’m,;,,,, is independent of temperature and weakly depmdcnt o .
. plasma densoly in the above tabuiahon The conveciive thermal flux s listed parenthetically (assuming a diffuse .
- peefile 1 = ng(l - 2/t ) only for cases where Wee /u,., 2 10 (m 7abla ls) The e.wpfauon t.bubtw .

e

Ah v 10’”‘“  nlem N )”Hehm w.‘ )[ I\:,:}
. YGreatly exceads classical thermal flux, -

ideal MDD jnstabilitica as based upon the prineiple of vivinal work {the 31 approach).

Rl"’

~Fow this veason, such modes ave often cuﬂied “E- -tuordes,” in connection wnh g:,t.wﬂalmnul" s

mstalnhhen

In the azinathal saagaetic uoszle, .mn?lwi class of flnte- Wpt' pr-mniml fons may also BN

_ ':mme deiven by the free envrigy in a sheaved axial flow field (consonant with o *nolip”
-« bouudary condition o the kuteval walls). {These ave in-addition to the Rayleigh-Tayloe-

: 'f‘l-‘l‘ o




type flute modes that can he unstable (depending on the radial pressure profile) due to
the had magnetic curvature of By et the outer coaxial electrode.] Such perturhations
are closely related to the Kelvin-Helmholtz instability and to the shedding ol vortices by
airfoils. '

Finally, we shall mention that Kelvin-Helmholtz type instabilities of flute parity can
be induced by plasma-sheath effects, even in the aksence of an externally-driven piasina
flow field. Thus, these instabilities may even be relevant to the meridional magnetic nozzle
although it has no zero-order flow in the azimnuthal direction.

Both Rayleigh-Taylor and Kelvin-Helmholtz types of flute perturbations merit
consideration here, because they both can lead to the formation of macroscopic eddies
that convect plasma across the magnetic field.

In the absence of a definitive and generally accepted practical model of the turbulent
MHD boundary layer for highly-cenducting (R, = 1) high-beta (8 ~ 1) plasmas, we shall
consider here what can be said about the influence of the above instabilities on convective

cross-field transport. (However, Demetriades has constructed a well-considered approach
" to the turbulent MHD boundary layer problem for low-beta plasmas having R, small.5~?)
~In this connection, we observe that in a magnetized plasma having small ion gyro- -
racius, and with beta not large compared to unity, the presence of the magneiic field
may he expected to lend some degree of rigidity to the plasina, so that the character of
© turbulence and convective transport in such a plasma may well be rather different from
the turbulence and associated transport in a neutral gas.

i) Instabilities of the Rayleigh-Taylor Type. The meridiona! magnetic nozzle must
contain a transition section hetween the raservoir and the nozzle throat where the magnetic
field lines and the streamlines are narvowing down, so that these lines appear convex to the
outside, A core of hot plasma would tend to be unstable in this vegion of “bhad curvature.”
Purther downstream, in the throat seetion of the nozzle, the lines appear concave to the
outside, appearing as a region of “good curvature” to the core of hot plasma. (For example,
~osee Fige 300) Becouse the potential energy driving the instability, 6, consists of an
integral over thie entive plasina volume,™ the stability properties of the plasiia on a given
“flnx tube will depend upen the mt%mted enrvature effeet (good and bad) all along the
~field lines in that flux tube, ns well as depending vpon the radial pressure gradients in that
Alnx tube, - A similar problem has vecently been formmlated (but not salved) tor the case

the torus vespectively). .

-~ la'the preseut instance, we slmﬁ malw ® sunpie “wnwacaw estmmte of the pt)ksmk"

O eftect of the flate anode. m-.t’\bthw ' the transition rvegion in. ovder to indicate the -

- Cimportanee of a mope detailed and systematie examination of this eifect.” “We emphasiie
" that ‘an instability of this kind in the transition region conld. have a destruetive effsct

- on the entive plasia-veseyvoir il vave is not ex xereiserd, (or example, it is well knowis

* that thetaspinehes, nontrally stable aloug Uielr ligth Lecause of 7ero cnrviture, can be

- thrown sidewsnys to the wall Beeanse of inctubilities-ussoviated with the bad enevature of-

- agnetic miveors apphied wt the ends of the pinch.) We alse note that suificiently shoat

o wavelengths of the Rayleigh-Taglor insiability eaw he partially stabilized by !lw preseiie

o ;of llmd V!sw.slty Tlus ellcct w;ll be tmai«l in !hv snnary wm(m in (hap. -

of a plasma flowing al@ng field Hines in 8 tokamak,""¢ for which the flowing phsm.n also ‘
- samples alternating regions of g L,t)t)tl .mrl bad curv mm (on the inner mxd outer ngmm o{ ca




To proceed, we consider a simple model of an incompressible fluid, unstably stratified
under gravity. (The eflects of compressibility will be discussed shortly.) From Ref. (8-a),
one can infer that the effeclive gravitational force is a centrifugal force induced by thermal
motion along B, which is given to order of magnitude by

g ~v?/R, (1.56)

where v; is the ion thermal velocity and R, is the radius of curvature of a field line in the
- bad curvature region.” In the presence of subsonic parallel flow, V|| < v;, this expression
S ' will be modified by a term ‘H /Re, but the order of magnitude and the scaling still will be
correctly given by (1.56). R :
‘ Furthermore, for: flute modes"'( wherein the wave-vector lies across the shearless
, magnetic ﬁeld), “ixt‘xs easy to sbow that the magnetlc field effectively drops out of the -
S ‘ ©dynamics, U 5 5
] Now, {'lmmclrzwekha,x8 ~d has prcqented the solutlon for the Rayleigh-Taylor instability
in a diffusely stratified meditun (ougmally wor ked out by Lord Ra.ylelgh) The growth rate,
T, is found, t@\be‘ gweu approxunately by '

e \/'” o (I.57)

where Q7% is the scale length of the wustably stratified medium. 1t is noteworthy in
the exact formula that as wavelengths increasingly smaller than Q™% are considered, the
growth rate is not enhanced, but remaius essentially as given by Eq. (1.57), Therefore, this
configuration provides an answer that, in some sense, completes the result for the sharp
boundary model of a heavy fluid superposed on a lighter fluid, for which the instability
growth rate increases without limit for increasingly smaller wavelengths,

. Let us now compare the growth time, of this instability to the transit time, tg.¢,, for

~an element of plasima to flow through the section of bad curvature. In so doing, we shall
set -~

Q-l = Oy, ‘- - (I-SS)

where A, is the representative radial scale length of the unstably stratified plasma profile
in the bad curvature transition section. Let the axial length of the Imd mx‘vature sec.hon

be ¢g.¢., then , |
tg.e. & (pe/V) - (1.59)

Then, the number of growth times available for this type of instability is given by \flom- ‘

Eq's. 1.56~1.59) : S
(p e, vilpe [Be o .
11* C, \[ \/,:_: ] ,‘L sy / o - . . . I ,60
b.e ‘" P I R, \ Qe ( )

o

For flow that is approaching the transonic condition, Vy 2 », and with (g = R,
aud with a sulticiently diffuse profile so that A, = A, one would expect only a few
*. vession for the : > % elgentrequency, w® = OIV/K, wl
hom the p,onoml expression for the square of the vomplex eigentvequeny, w \, wheve
61V and K nre the potentinl nnd kinetic encrgios associnted with pressiwe diiven modes, with um(orm [

and eqqual temperatures one obtains w¥ % ("ﬁ i* )l ¥u ', to order of muummlc
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Rayleigh-Taylor growth times to be available during transit through the bad curvature
seclion, Moreover, since flute modes (and the closely related ballooning modes) of this
gravitational type extend nonlocally along field lines, the destabilizing tendeucies may be
mitigated by the eflects of good curvature sampled by the modes in the nozzle throat. This
qualitative preliminary estimate of a henign result needs to be supplemented by detailed
gnantitative studies of the MHD stability properties of the plasma in the entrance region
of the nozzle. (For example, we note that the speed-up of V) towards v; initially occurs in
conjunction with a decrease in R, so that Eq. (1.60) contains counteracting factors that
require sorting out by detailed computations in order to obtain the net result.)

However, for ideally well-confined plasmas, one could be dealing with a
sharp-boundary profile in which a core plasma is supported in transverse pressure balance
by an external magnetic field, so that A, <« R.. According to Eq. (1.60), this pure form of
the magnetic nozzle concept may then be subject to a large number of instability growth
- timmes during plasma transit of the bad curvature section. Thus, it is relevant to consider the
sharp boundary version of this instability. (But note that the Rayleigh-Taylor instability
does not require a free boundary, but can also occur in a stratified profile contained within
fixed boundaries.)

To this purpose, we consider a uniform, motionless, field-free, highly conducting
plasina half-space in the region @ < 0 with a sharp free boundary at the plane a = 0.
To the right in the half-space @ > 0, there is a uniform, shearless magnetic field B, in the
2 direction, We study the most dangerous Rayleigh-Taylor instabilities (thus with wave
vectors in the y-direction) induced by an equivalent gravitational field g& applied in the
x-direction. We limit the analysis to incompressible motions (with compressibility effects
discusserl thereafter), '

V.6V =0 (1.61)
so that, within the plasma, the linearized mass continuity equation A
—iwbp + poV - 6V =0 o (1.62)
implies no density perturbations, »
- - : bp =0, (1.63)

(Here, any quontity € has been split into zero order and finetuating parts, Q@ = Qp(2)-+6Q,
with Q) = gla) exp [i(Ay —~ wt)].) The linearized momentum equation reads, for @ -* 0,

iuppdV - VOP = igbp == 0 (1.64)
(wh_g‘rc 2 is the wnit vector in ilu_'_x-diret'titm). fremn which, with incempresgibility, R
o | R S o . (L65)
- The solution of (1.65)-that vanishes in the plasma as & - e i |

| op f:,vépofkrfi(i'yxw%'t)r . (1.66)
: le,tgtaﬂ ,ﬂuijd pressure pe;ft.urlml.im\. at_the displaced boupdary @ = &4, is then B

S 7 P VR LR R R (1.67)
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where £, is the normal displacement of the houndary and we have used the equilibrium
pressure-halance condition in the gravitational field, VP = pyga.

To the right of @ = 0, there is a uniform vacuum magnetic field B,¢ in the equilibrium
state; and the perturbation magnetic field satisfies V - 6B = 0 and V x 6B = 0. Hence
there is a fluctuating maguetic scalar potential, é¢, with

6B = Ve , (1.68)

and with
V26 = 0. (1.69)

The solution of (1.69) having the form f(z)e*¥ is
b = bpge™*7el By, (I.76)

Here, we have chosen the solution that vanishes at @ — 4-co. It is obvious from the form.
of (1.70) that . ,
' 6B, =0, - (1.71)

so that the fluctuating magnetic pressure (Eo - §B) vanishes in the right half-space, @ > 0.
Therefore, by continuity of pressure, the pressure perturbation at 2 = £, given by Eq.
(1.67) also must vanish.

' | 6P = —{2pog (1.72)

Here, 6P is to he evaluated at @ = 0 to first order accuracy. Now, 6 P can be related to
oV, through Eq. (1.64), '

5P = z‘;’ pedVe, (1.73)

and 8V, (2 = 0) is related to the boundary displacement ¢, by
6V = —iwé,. ' (1.74)
The use of (L.73) and (1.74) in (1.72) immediately produces the Rayleigh-Taylor dispersion

relation,
2

w® = —gk, (1.75)
“corresponcling to the growth rate (w = I'),
=gk | (175~ a)

. From whai has been said earlier, we know that the growth rate does not increase without
limil as A inereases, but is maxinized for :

k,;_z_\.,.‘ T C C(LT6)

wlwrt_; Ay is the i\'idt_h of the “sharp” _lmuudau'y.
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Taking g =~ v?/R,., and k ~ A1, the above growth rate Eq. (1.75-a), can be estimated -

as
,i l{(. o
I et (1.77)

Thus, since A, < R,, the iustability growth time, I'™!, will be much shorter than the
thermal transit time through the bad-curvature region, in the case of a “sharp” houndary
profile. (For tg.c. = lp.c./V}, we find T'ig.c. from Eq. (L77) agrees exactly with Eq.
(1.60).)

The above problem can also be worked including the effect of compressibility, and
solved exactly. It is thus found that the effect of compressibility is stabilizing, but only for
modes with wave vectors small enough that

g~ ks?,

where s is the compressional communication speed across the magnetic field. (Hence,

s ~ v; (ion thermal velocity) or (/4 (Alfvén speed) for B ~ 1.) Taking g =~ v2/R, and
8 =~ vj, one finds compressibility is important for global modes such that 1 =~ kR,. For
larger wavenumbers, k >» RJ!1, the incompressible model shiould remain valid. ‘

The presence of such growing g-modes in the meridional magnetic nozzle opens a
- channel for quasi-linear radial fluxes of particles and heat due to “crinkling” of the originally
axisymmetric plasma boundary, i.e. a form of “convective transport.” Unlike turbulent
transport in ordinary fluids, the convective transport in this case is due to the colierent
activity of individual modes,

For example, the convective radial mass flux can be estimated as (6péV), where
the brackets signify an average over the azimuthal (y) direction. Here, we shall use a
“mixing length” Ansatz. Since ép = 0 behind the “sharp” boundary in the core plasma,
its value within the boundary layer itself (i.e. ép at a fixed position, induced by a moving
non-uniform profile) must be given by ép ~ —€.(dpo/dz) where (dpo/dw) is the density
gradient within the boundary layer. Also, within the boundary layer (assumed to move
rigidly) we have 61 = —iwg,. Since this is a purely growing mode with w = iI", the
guasilinear mass flux becomes ' ‘

(6p6V) = ~(€3)T (dpodu). (1.78)

Using the mixing length estimate for the nonlinear saturation limit, £, ~ A,, with
[dpo/da} ~ po/ Ay, and using (1.77) for the growth rate, we find

, /A, .
(6p8V) ~ (l?n"i)\/ T (1.79)
~Also, Bq. (L78), with & ~ A, and I' given by (L77), is equivalent to a diffusive flux,

(dnoV) = Dppdrg/de ' C A LN0)

- whure the Rayleigh-"laylor-induced particle diffusivity is given by

‘ A2 )
R g U TV
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Thus, looking at the plasma from an axisymmetric point of view, there is an apparent
radial mass flux in the bad curvature region, due to the development of short wave length
g-mode instabilities, on the order of the ion thermal flux times a small number depending

“upon the thickness of the “sharp” boundary. Of course, Eq. (1.79) is valid only as long as
A, < R..

The fraction of mass “lost” to the outside in this manner this manner, heyond the
desired axisymmetric sharp boundary, during plasma transit through the bad curvature
region may be estimated as follows. The rate of loss multiplied by the transit time ({p¢)

~ gives the amount lost (per unit length), whicli is then compared with the amount present
(per unit length).

((6p6V)27rTB,C,)tBC ( w; ) (?B.C.> A,
ass loss ™ ~2| R 1.82
Frass 1 prrd o Vi/ \rs.c. R, (1.82)

in which we have made use of Eq. (1.79). Here, rp.¢. is the representative ordinary radius .. -

. measured from the axis of symmetry at the section of bad curvature. Since (A,/R.) only
enters by the one-half power, the original boundary of separation of plasma and field must
be very thin indeed in order that the mass-loss fraction be small, since the remaining
factors are of order unity. Thus, the loss of integrity of the desired sharp boundary in the
form of crinkling, and the associated mass and heat transport (heat transport is discussed
below) out of the core plasma, present serious issues deserving detailed computational
study focused upon the entrance region of the nozzle.

In a similar manner, one can estimate an equivalent nonlinear heat flux due to these
instabilities, in addition to the eftective convection of heat associated with the nonlinear.
mass flux,

Ty(6n6V) = ;ff—"(a §V).
‘

The heat flux itself is given by

dT

VT = no((—iwge) (<652 )) = ~nol(el) (1.83)

Lig
@
where dTy/da is the zero-order temperatire gradient in the boundary layer separating the
plasma from the magnetic field. Comparing to Fe. (1.78), we see that the effective thermal
diffusivity is identical to the effective mass diffusivity. Similarly, the fraction of heat lost
by the effective thermal conduction mechanism in Bq. (1.83) proves to be the same as the
mass-loss fraction of Eq. (1.82), to within a numerical factor.

Use of the expression for 1' in Bq. (1.83), with &k ~ A1, £,
T0/ A, yields a quasilinear racial heat flux (whether due to convection or concduction) on
the order of

AN (AN e MWW ,
gRr "'("71’1)(” ) | X 10 "(k-) n{em 3)’1‘::/‘3)[ o -] (1.&3« )

- Thus, forn = § x 10" em™2 and T = 1 €V’ we have

AR ruw | . A )
o | h , i VI 1T = 100 eV g e ( - ) 10’ R I

Y] (Rc) N ey ‘ wd {on 1 =1 V)Vt v YR1 K. , mi |

»
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Thus, the higher temperature (and density) cases can produce very high heat loads,
" correspondingly larger than in these examples to the extent that n{em™3)/(1/2 % 1015 is

larger than unity. In any case, Eq. (1.83-a) can provide an estimate of such quasilinear .

heat fluxes. These estimates are not very sensitive to the sharpness of the plasma edge.
In summary, the meridional nozzle entrance region presents magnetic field lines of
bad curvature to the plasma, which may then become susceptible to instabilities of the
Rayleigh-Taylor type. These instabilities have rapid growth rates in sharp-boundary
-plasmas, with attendant serious consequences for heat and mass transport losses according
to the simple quasi-linear estimates given above. In order to study these effects properly,
3D MHD simulations are required and are recommended. Note also that fluid viscosity can
provide a stabilizing influence on the growth rates, as discussed in Chap. V. Finally, we also
note that the azimuthal magnetic nozzle has bad magnetic curvature at the outer electrode,
so that Rayleigh-Taylor type instabilities may occur there too. In this connection, it is
“worth noting that special diffuse pressure profiles in Z-Pinch geometry can be stable to -
» 'these msta.bxhtles due to the effects of compressibility.2 "
ii) Instabilities of the Kelvin-Helmholtz Type. -As in the
“preceeding section on the effects of the Rayleigh-Taylor instability, we address our remarks
liere primarily to the radial transport issues in the meridional magnetic nozzle. A recent
‘pair of journal articles®~¢ has made the important point that the electrostatic sheath
generated by a plasma, nominally at rest, in contact with a (floating-potential) wall in
the presence of a shearless magnetic field parallel to the wall induces a Kelvin-Helmholtz
instability just from the action of the sheared E, x B drift velocity. Here, E, refers to
the radial space-charge field of the plasma sheath. This instability and its subsequent
turbulence occur spontaneously, in the absence of an =xternally driven flow field. The
ultimate source of free energy for this instability comes from the joint action of ionization
and heating in the bulk plasma, which serves to charge up the wall leading to radial electric

fields that produce the sheared E x B drift velocity. Thus, this situation is relevant to B

instabilities in the weridional magnetic nozzle (except {or the limitations nientioned helow)
with wave-vectors in the azimuthal direction, consonant with the absence of externally
driven azimuthal velocity in the pure form of this nozzle configuration,

Moreaver, Theilhalber and Birdsall®¢ found quasi-linear modeling to be inapplicable
for the description of instability saturation and turbulence (in contrast to our discussion
- of the Rayleigh-Taylor instability in the preceeding section), because of the shedding of
small-scale vortices away from the plasma sheath region. Instead, they found the houndary
layer always to be in an unstable condition and always to be radiating small vortices away
(as well as to retain large vortices which coalesced). The halance hetween the action of the
instability and the shedding of the smaller vortices allowed the plasma sheath to maintain
itsell in a “turbulent steacy state.”

Here, we shall present a brief account of the Kelvin-Helmholiz simulations of
Theithaber and Birdsall and their implications for “anomalous” transport losses in the
meridional magnetic nozzle. We remark that these instabilities and their consequent
turbulent fluctuations are dangerous in the same way that the Rayleigh-Taylor fluctuations
“are dangerous; that is, both types of fluctuations arve able to take place without bending
the magnetic field lines,

Theilbaber and Birdsall have carvied out and analyzed the vesults of 2D particle
simulations in slub geometry. The simulations were electrostatic, the magnetic field was
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uniform and shearless, with no curvature, particle electrons -and ions were introduced in
bulk and their orbits were exactly followed ‘as influenced by the macroscopic-electric fields
until the particles reached the wall, at which they were absorbed. An explicit algorithm

" was used to advance the particle orbits on theé electron gyro time scale. The dynamical

processes studied were of the flute type; that is, tliere was no variation of any quantity in
the direction &loug the magnetic field. Because of the limitations of the computer, only
a few runs were performed, and some of the dimensionless parameters were unrealistic.

‘For example, the electron plasma-frequency to the electron gyro-frequency was taken as

Wpe /wee = 0.182. In reality the latter quantity should be much larger than unity since

- Vugpe' Jwee = ( 'j/ 2)(c/ve), ‘where 3. = 8mnT,/B?, ¢ is ‘the speed of light, and v, s the

electron thermal velocity. Thus, even at temperatures as high as 100 eV, the electron beta
would have to be less than 10~4'in order for Wpe/Wee to be less than unity. Nevertheless,

this state-of-the-art simulation produced new and unpoxta.nt physxcs results relevant to the

behavior of bounded magneto-plasmas.
The linear instability of the self-consistent sheath can be understood from the

*_ observations from the simulations tliat the ‘sheath thickness is about three jon- -gyro-radii

(As ~ 3r¢i) and the sheath potential drop is about twice the ion temperature (¢, ~ 2T;/e).

~ Thus, the space charge electric field in the radial direction is E, ~ ¢,/A, =~ (3v)(iB)

where, v; = (2T:/m;)!/2 is the ion thermal velocity. (Ref 8-e uses v; = (T;/m; 1/2.)

| Thus, the gmdmg center drift veloc1ty is Vo = cE,/B = jv;. The instability growth rate T
must he proportional to (Vp/A,), as these quantities are the only characteristic zero order

quantities with tie comect dlmenslonal ‘combination for the slow time soa.le, ﬂmd-type
growth rate. A numerical solutxon of tlle lmemlzed equations ylelds

where w,; is the ion gyro-frequency. This maximum growth rate occurs at a flute-mode

.wavelength byt (m the y or 8 divection) on the ordes of kyre; = 0.4,

We - now inquire whether such an instability can grow appreciably during plasma

. trausit of the meridional magnetic nozzle. Taking the transit time t, as ¢, ~ (, /v; where
¢, is the length of the nozzle and v; is the ion thermal velocity, the number of growth times
- can be expressed as

I't, = 0.04 - A ' (1.85)
Tei .

where “@" is a characteristic tadius of the nozzle and A = {; /a is the nozzle aspect ratio.

Here, we have ade use of Bq. (1.84) for 1",

We see from Table L5 that, for 8 = 1 hydrogen plasmas, the ion gyro-radius »,; can
be on the order of 1 cm for densities in the range of 10'3 — 1045 em~3, and ry; is even
smaller at higher densities, Thus, for transverse dimensions on the order of 10 — 10? em
and nozale aspect ratios of 10, we find that the number of growth times can range from 4

to 40, or even larger at higher densities, Thus, the Kelvin-lHelmholtz instability should be
-expected to be present, in the azimuthal direction in the meridional magnetic nozale.

According to Ref. (8-e), the noulinear turbulent state of this instability indeed
contributed to cross-field transport of plasma, but not directly by means of the coherent
vortex structures, The actual transport mechanisin waz found to he dne to the concomitant
existence of incoherent turbulence at short length scales, where it manilested itself as

52




Bohm transport. The Bohm transport allowed electrons to migrate from the interior to
the outside of the large coherent vortex structures, and thence to the wall. Without the
Bolun transport, the electrons would hiave remained trapped in the vortices. Measurements

from the simulations gave the result (in cgs units),

Dy p 7 0.04¢T} /e B. (1.86)

This Bohm diffusivity, Dg_, .., is about one order of magnitude smaller than that given .
earlier in Eq. (1.53). However, it acts over a much sharper gradient, only a few Tei. wide,

This leads to a radial cross- -field mass transport of order

on T, n |
n 1 cT;, n 1 (187)

R —n;

-"’ = D _— R o T ~
(nV)e = Diotm 8z 25eB 3ry 150

" where v; = (27}/m;)}/2. Thus radial mass transport through the plasma sheath is some

" small fraction of the ion thermal flux.
The fraction of mass lost during axial trallslt at velocity. ‘Il ~ v; through the nozzle -

in this mauner is clearly given by

1 nv2mal, 1 -
fmass loss ™~ 150 —;2,71'02 ;‘ = :(,"5714 ([.88)

where A = (. /a is the aspect ratio of the nozzle. Clearly, for A < 10, the fraction of mass

(and heat) lost in this manner should be negligible.
The actual trausverse heat flux due to this kuxd of Bohm diffusion, qg,pm, 18 (using

166117 v,), . :
T2 [M“ ] : (1.89)

1 -
q,Bohm -~ }gd X 2% 10 -8 (C?ﬂ 3) (eV) | e

For n = % x 10'% em™3 and 7' = 1 eV, we lhave q;?ahm -ﬁﬁ[-’-‘;{%’-], but for T = 100 ¢V
?

we have ghoum ~ T X 1000[ 48] ~ {2, Thus, these kinds of heat fluxes do Rot seem

very serious due to the simall numerical factor in front, except at much higher densities,

n(em™3)/(1/2 x 10'5) = 102,

We conclude this sub-section on the Kelvin-lHelmholtz instability with the remark
that, although we have considered here only the meridional magnetic nozzle, the azimuthal
magnetic nozzle also will be subject to such an instability and also in & manner that does
not bend the field lines. To address this issue, the simulations of Ref, (8-¢) then would
have to he extended to include an externally deiven plasma {low field, and removal of the
“foating potential” assumption on the walls, since the walls are electrodes connected to

i) Swumary and Comments on Convective Transport, 1t
3 was pointed out that the entrance region of the meridional magnetic nozzle has bad

.- magnetic curvature and is therefore susceptible to {lute instabilities of the Rayleigh-Taylor
type, thus leading to stationary deformations in the azimuthal direction, For general
_dilluse profiles, it was estimated that probably only a few instability growth times would
be available during transit of the entrance region, so that diffuse profile conligurations

an external driving circuit,
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- would probably be immune to the consequences of Rayleigh-Taylor instabilities. However,

sharply defined plasma profiles with a free houndary would be vulnerable to the rapic
growth of short wavelength instabilities witlh wavelengths on the order of the boundary
layer thickness. Even pressure-gradient boundary layers that extend right up to the wall
without a {ree surface are vulunerable to this instability when %‘rz < 0. The linear growth
rate of such instabilities was estimated by Eq. (1.77), the quasilinear mass flux by Eq.
(1.79), the fractional mass loss by (1.82), and the quasilinear heat flux by Eq. (1.83),
and Eq. (I.83-a). These equations can be used in conjunction with Table I.1 to provide
estimates of these losses and heat loading of the walls in association with conjectured
examples of thrust pressure and thrust power, provided that one has an estimate of the
boundary layer thickness. For the latter, one might consider the effect of classical resistive
diffusion as expressed by Eq. (1.31), adapted to the region of bad curvature of aspect ratio
Apg.c.. Then, the factor \/Ar /'E in the above equations becomes’ :
7’B c. AB c /4 TB.C.
rB.C. R’

where rp.c. is the ordinary nozzle radius in the region of bad  ~wvature, and R, is the
magnetic Reynolds number in that region.

The determination of the boundary layer thickness by classical resistive diffusion-
assuwines that the ion gyro-radius r.; is much smaller than any characteristic length
in the fluid model. However, in Table .5, we see that many (3 = 1) examples
(n ~ 10'® - 10'® em~3) have r.; on the order of 1 cm which is not all that small. For
situations in which r; exceeds the classical resistive layer thickness, i.e., when

Tei Ap.c.
. > R
rB.C. N

then one should use ».; as the thickness of the houndary layer if the ions are nmgnetized
For instance, from Table 1.6, we see that for T' = 100 eV, one can have R, > 105, and from
Table L5 we see that re; ~ 0.5 em for n ~ 10'® em~%, Moreover, Table 1.8 shows that the
ions are magnetized for these parameters. Thus f A,./ R, = \/1.,, /R.,. For v¢; ~ 1 em and

Re ~ 10% em, Bq. (L.77) becomes "

! R"' x 0.1

- allowing on the order of ten Rayleigh-"Taylor growth times in the entrance rcg,lon. T,

(L82) for V) 2 o and {y. ¢.~ rp.q. yields
Fnass loss ™~ 8 fow times 0.1,

The heat ﬂux to the wall pmvuletl hy l',q (I 83-a) lwt'onws

VTS <ypife | AW
qr1 ~ 2 x 107 | n(cm _")]M. [ m-’ .
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(1.89). The fractional mass loss appears to be negligible, and the heat loading of the lateral
wall appears to be moderate except at high densities (= 1017 em™?) and simultaneonsly
high temperatures (~ 100 V). The heat flux equation can be used in conjunction with
Table 1.1 to provide estimates of the wall loading in association with conjectured examples
of thrust pressure and thrust pow. Caution is advised in the use of these results because
they were obtained in simulations with unrealistic parameters. For example, Ichimaru™
assumed that o* > 1, equivalent to w2, /w2, > 1 where wye = (4wne?®/m.) )12 is the
~electron plasma frequency; whereas the simulations in Ref. (8-e) used w2, /w3, <« 1. This
discrepancy may account for the much smaller Bohm trausport obtained by Ref. (8-e) in
comparison with the theory of Ichimaru. It is an open question whether these results of
Ref. (8-€) will remain valid in more 1‘ealistic simulat ions or over a more extended range of
parameters. In a simulation for which w . > w2, it is conceivable that the Bohm diffusivity

would agree with Ichimaru.

Finally, we remark that the azimuthal magnetic nozzle may well be vulnerable to
both Rayleigh-Taylor and Kelvin-Helmholtz instabilities, as modified by the presence of
externally driven axial flow, and electrodes not at a floating potential but connected to an
external circuit, Such instabilities would consist of axisymmetric deformations in the axial
direction, drifting axially. Their initiation and nonlinear behavior can be examined with
time-dependent (i.e. initial valne) 2-D MIID or particle simulations. The latter would
be preferable in order to be able to monitor the stabilizing effects of finite Larmor radius
ion orbits. Properties that are sensitive to this axial plasma translation are electrode
resistivity, electrode surface roughness, plasma viscosity, and axial non-uniformity of the
electrodes associated with nozzle shaping. These properties should be included in a
realistic simulation, and in analytic modeling of the Rayleigh-Taylor and Kelvin-Helmholtz
instabilities in the azimuthal uozzle,

The azimuthal magnetic nozzle may also be subjeet to non-axisymmetric instabilities
as manifested in radial spokes or ares, These depend heavily on the Hall effect. They
have heen studied, both analytically and in simulation, by Demetriades®/, primarily in
connection with MHD generators, Such studies are valuable and should be continued and
extended in their range of parameters.

2. _Radiation Losses. The geneval condition for radiation losses to he velatively
small may be stated as follows. The energy lost by radiation from a sample of plasma
during the transit by thai sample through the nozzle should be simall compared with the
energy content of the sample. 'This general condition has to be stated in two different
ways, dopondiu;., on whether the plasma is optically thin or optically thick, Also, as in
the previous section on transport, one should momlor the mdmuon flux incident upon -
material boundaries,

In ovder to provide a survey of conditions nuder which plasmas ave to he vegarded as
optically thin or optically thick, A, G, Sgro has wtilized an opacity code bhuilt by Group ‘1
4 at Los Alamos. This computer code calenlates normahized absorptivities (Resseland -
~and Planck)?-®b3-b (ChID
assumes equilibriviy which strietly apphies to the equilibrimn plasma envisioned in the
~reservoir of the meridional nugnetic nozzle, However this shonld be at least bulicative:

in this case for hydrvogen plasma,  The Rosselund model -

of the opacity of the plasma in the nozzle itsell,. A more complete plww:wl deseription -

requires tlu, solution ol tlw vquatmm of 1 ulmtwe ' rzm.sler within, \Iw tlnw twhl and h.u
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kind of detailed investigation is beyond the scope of this report. Table I.14 displays the
" oniput of the Gronp T-4 opacity code in the form of Rosseland and Planck normalized
absorptivities (in cm?/gm) for various temperatures, Tiev), and various electron number
densities, n.(cm™2), for each temperature. The corresponding optical thicknesses, Lgo,,
and Lpianck (in cm), are obtained with the aid of the mass density p(gm/cn®) in an
obvious manner.

For plasmas with a temperature of one to a few eV, one sees from this table that
-~ electron densities above a few times 10'® cm ™3 are becoming optically thick for transverse
global dimensions larger than 10 em. According to Table 1.1, this transition occurs for
* thermal pressures above about 50 psi, in the neighborhood of 1 eV temperatures.

_ On the other hand, for plasma temperatures of 10 eV or higher, the plasmas remain

optically thin (for transverse global dimensions less than about 102 em) for electron
densities up to about 10'® ¢m™=3, corresponding to thermal pressures up to at least several
thousand psi. Such densities are within the assumed range of parameters of Table 1. \

~ Therefore, when estimating radiation losses, we always shall use the optically thin
model for plasma temperatures of 10 eV or above; and also for 1 eV temperatures for
densities below 10'® em ™3, But we shall use the optically thick model of a surface radiator
for densities above 10'® em ™3 for temperatures in the 1 eV range. The intermediate range
of n ~10'® em™3, T ~ 1 €V, is more correctly treated by solving the equations of radiative
* transfer, but that undertaking is beyond the scope of this report.

Incidentally, one generally can ignore electron cyclotron radiation as a loss channel
here, because, for the range of parameters considered (see Table 1.1), the electron plasma
frequency greatly exceeds the electron gyro-frequency, wpe > we.. That is, radiation
- cannot propagate out of a plasma unless the radiation frequency exceeds the electron
. plasma frequency, and this is not the case for the electron cyclotron frequency or its low
harmouics.

a. Optically Thin Case. From Chapter 1 of Glasstone and Lovherg,'® the
power per wnit volume from bremsstrahlung radiation in a Hydrogen plasma ol density n
~and temperature T can be written as ' S

Phrem = 2 % 10”25112(@'111"3)5['”2(91")[erg em ™8 s~ 7
= 2 % 1072003 (em =3I 3 (V) [ Watts m™2) (1.90)

(In this preliminary survey, we ignore line radiation and impurity vadiation.) For a
characteristic distance v [meters] to a material surface from the center of the plasma, &
rough estimate of the radiation power density P,y incident on the surface is (by assuming -
_roughly spherical symimetry), : ' N ' B
rim)

’ 2 agq ¢ ; . . ‘ .
P = Pb‘,“-‘"‘"_-';- =S '; X 10“““73"(07}1“3)'1"“(4:‘")r(n?)[“‘td‘l&,n:f% L)

- (Approximately the same velation is obtained withont making the assmmption of sphevieal »
. symmetry, For aspect vatios 4 = 1,2,... 5, one linds vespeetively 1o as pgs and 35 or
- acylindeical madel. The spherical model for Py g is adoguate for this scoping study.) -

In Table 115 helow, we tabilate the vadiation power densities on the lateral

wall according to Eq. (L91), in wnits of MW/m?, for » = 1 meter,

L oeh
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TABLE 1.15. Bremsstrahlung Power Density (A% /m?) on the Lateral Wall
Assuming a Characteristic Dimension of » = 1 meter
(For T'=1 ¢V, n = 108, and 10'® em ™3, the “optically-thick”
model is used, in which case the edge temperature of
the plasma can be influenced by thermal control of the boundary walls.)

T[eV) 1 10 100
nlem™% = 108 6.7x107T(MW) 21x107% 6.7x10°°

10" 6.7x1078 21x107%  6.7x107¢

1015 6.7 % 1073 21x107%  6.7x10"2

1016 - BTx 107! 21 6.7

107 er0 2A2 6700

10 (opt. thick) 21x10° 6.7 x 109

0% (opt. thick) ' 21%x10° 6.7 x10°

o ( gmp.uuu., with Table 1, ll we see Hhat for 1 lm‘ger tlmu or t-q\ml to 10 eV,
~the mflmhnn wall loads exceed the heat: wall loads for ion densities equal to or larger than

10" em 3, We see that for plasian densities npwards of 10°7 e, the bremsstvahlung -

- power, flvaNtv inciclont upon a nearby (1 meter distant) wall will vqual o e%wed on the .

. order of one to several lmidlred megawatts pey ‘sguare meter, far in excess of elassical

- heat thuxes at the higher deusitivs, However, such operating densities will be wiore orless

- ."'~pmlmlul anyway by the neeessity not to waste the initial thermal energy by x*mhatmb it .

~ from the plasing during its transit through the nosle, see B (197) heirsw.

B - Having diseussed the endintion Hix loads ineident on the beunduries in. tln‘ e
o optienlly thin ease, we retuen to the e basie physics issie of the feactional aniona ot'};
L energy | lnst febin the plasa by vadintion duving the lasmi transt throngh the nnz;ﬂr- .
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Comparing with Table .11, we see that for T larger than or equal to 10 €V,
the radiation wall loads exceed the heat wall loads for ion densities equal to or larger than
101 em~3. We see that for plasma densities upwards of 10*7 cm =3, the bremsstrahlung
power density incident upon a nearby (1 meter distant) wall will equal or exceed on the
order of one to several hundred megawatts per square meter, far in excess of classical
heat fluxes at the higher deusities, However, such operating densities will be miore or less
precluded anyway by the necessity not to waste the initial thermal energy by radiating it
from the plasma during its transit through the nozzle, see Eq. (1.97) below.

Having discussed the radiation flux loads incident on the houndaries in the
optically thin case, we return to the more basic physics issue of the fractional amount of
energy lost from the plasma by radiation during the plasma transit through the nozzle.

A characteristic time,ty o, for energy loss by bremsstrahlung radiation from
the plasma can be estimated from

1/2
thermal energy per unit volume v
(thermal energy per unt oo _ 9.4 % 100 —Y)_[eee]  (1.92)
(radiation power per unit volume),g, n(em—3) .

tbrem =

The transit time through the nozzle is estimated as

. £, ‘
REANLE f“‘/’;’) (1.93)
v 13 X lUf‘ Tevylem s") ‘

» ?‘"‘!‘"P.V K NT. ?“«"-,ﬂ., - ; N
. ..,Va.lxrw e 3 o _.'A._(l.Jfl_)._._._,
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described by the power emitted per unit surface at thie plasma edge, having temperature
Todge, as given by the Stefan-Boltzmann law,

Prag = 05T, (" K )[Watts per m?] (1.98)
Awhere the Stefan-Boltzmann constant, agy, is

osp = 5.7 x 1078 Watts m™2(°K)™4]. (1.99)
Since 1 eV & 10%°K, the surface density of radiated power also can be written as

Prag %6 x 10°T (€V )[Watts m ™). (1.100)

Thus, an edge temperature of 1 eV implies 600 A W/m of radiation energy flux on the
wall. The use of this formula assumes that Tp, < T} cdges Where Ty is the temperature
‘of the hot side of the wall next to the plasma. The use of this formula also assumes
that the mean-free-path for photon absorption in the plasma is small compared to the
temperature-gradient scale length in the plasma. When the optical absorpion length is not
~ small compared to scale lengths in the plasimna, the Stefan-Boltzmann law loses validity
“and one must solve the full radiative transfer equations.
7 Now, it is important to note that this loss process depends very sensitively on the
‘edge temperature of the plasma and is independent of the plasma density as long as the
optical absorption length is short. In contrast, the radiative loss from the optically thin
- plasma depends upon an integral over the bulk plasma, and is very sensitive to the plasma
density. For this reason, bremsstrahlung radiation from an optically thin plasma and the
associated power density on the wall will be hard to control by profile adjustments, for a
“given operating density in bulk. However, in the opticrIly thick case, there is a possibility
to control the radiative loss by controlling the edge temperature of the plasma. This
thermal control problem in principle amounts to a detailed engineering calculation, but it
can_ be scoped out schematically as follows, ‘
Let the boundary wall have a thickness A, Let Ty be the temiperature of the hot
side of the wall. Let the temperature Te on the cold side of the wall he maintained
by a circulating coolant, or by a heat-pipe arrangement. Then, in the steady state, the
‘temperature profile within the wall is linear, and the heat {lux through the wall is given
by ‘

o

gw = Ky L 1e), | (1.101)

where Iy is the thermal conenetivity of the wall materinl, (We assume for stinplicity thing

Ky is practically independent of temiperature.) Also, assuming that radiation dominates

thermal conduction, then, : 4 A ,
. Prgg = vy = OSR Iul!)t ' (1.“’2)

where Teqqe is the edge temperature of the plasma (not generally equal to the \\ull e

temperature). A specification of gy then determines {7 W lg ) wimely,

¥ A | ) ‘V'
Ty = ,'1(;' Fgw . (1.103) .-
: S0 Kw _ SR

60




A specification of qw also determines the edge temperature of the plasma from the Stefan-
Boltzmann law, provided that radiation is the dominant loss process. This law then
constitutes one of the boundary conditions for the plasma in the optically thick case.

For a given Pr.q = qw, the restriction that T should remain below the melting point
of the wall material puts an upper limit on the wall thickness A. More detailed engineering
calcilations also would have to take into account the differential thermal expansion in a
wall of given shape, together-with the associated strains and stresses, as well as the detailed
engineering mechanisms that determine the temperature of the coolant T¢.

For example, given an engineering estimate of the heat flux that can be handled by the

pumping of coolants or other meauns, gy is given. Then, for a simple example with Ty <
Ta.p. (the melting point of the wall material) and assuming that T < Ty, p,, an upper
limit to the wall thickness is determined from Eq. (1.101) as A == kw Tas.p./qw. Moreover,
from Eq. (1.102), one has Ty45. = (qw Josp)t/* which determines the edge temperature of
the plasma. In practical terms, Tegge(eV) = (g {W/m?]/6 x 108)Y/4. Thus, considering
plasia radiation incident upon a copper wall, assuming gw = 100 MW/m? = 104 W/em?,
kw = L cal em/(em? 8°C') = 4 watts/(em®C'), and Ty p, = 10*°C, we find A = 0.4 em
and Teqge = 0.6 €V. For qiv = 10 MW/m?, we find A = 4 em and Teqge = 0.34 V.
Thus, in this manner (admittedly oversimplified), one can attempt to exert some control
over the radiation wall loadings and plasma edge temperatures, for the parameter regime
of optically thick plasmas.
A To continue our discussion of the optically thick case, we now want to write down the
condition that ensnres that the energy lost by surface (black body) radiation during the
transit of the nozzle by a given portion of plasma is small relative to the thermal energy
content of that portion of plasma. The characteristic time for loss of enexgy by this means
from a spherical plasma element of radius r can be estiniated as

3 | ot ' T(eV
typ = - X nt. i—f-,m) =27 %107 “n(cm’a) e )
-2 O'q;} ll,dg(, f” edw( ‘ )

cgs

r(em)sec.] (1.104)

where ' is the bulk plnsma temperatuee aned T,g,, is the edge plasma temperature, (The -

result is almost the sme for a exlindrical volwine of plasma.) The transit time thrcug,h:
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must be short compared to nozzle dimensions. The need for an upper limit on T, g4 implies
the need for an upper limit on the heat flux carvied away at the boundary.

II. DEVELOPMENT AND APPLICATION OF A CODE FOR STEADY
IDEAL MHD FLOW THROUGH MERIDIONAL MAGNETIC NOZZLES

A. The Basic Equations
In Appendix A, a brief derivation is given of the Bernoulli equation, and then

its consequences for nozzle flow for the case of long, thin magnetic nozzles. Iu the
present section, that treatment is augmented by a full 2D derivation of the procedure
for deteriining self-consistently the transverse and longitudinal profiles of magnetic flux,

" mass density, velocity, and thermal energy (enthalpy).
We begin by writing down the ldeal MHD Equations for Steady Flow.

(IL.1)

pV VW +VP=JxB

V.V(Pp")=0 (11.2)

V. (pV) =0 (11.3)

V.-B=0 (11.4)

Vx(Vxl)=0 ‘ - {11.5)

- In the following treatment @ vefers to the ighorahle azimuthal coordinate, and v refc-m
"~ to the radial distance from the axis of symunetry, Asmmmg umsvnmwt ry and 19 = Bg =0,
K Lq% (1L 3) and (11, 4) can be suhsﬁed by (lehmug, : _ , 1

' (”f"i,) '

i and

LU X VO

Y00 x v | uLyy

) E where U i the streaw Fanetion for the miss !lm and ¥ 15 the &he‘am hmdmn 1«): tlae
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Using the identity V. YV = V%i +(VxV)xV,Eq. (II.1) can be rewritten:

s2

O} . . - .
pV—2—+VP+(V><V)><pV=JxB.

LEquation (11.9) scalar-multiplied with V implies (since V is parallel to B )

. V2 o
pV V-V VP =0,

which can be transformed into:

(I1.10)

.using Egs. (11.2) and (1L.3).
Equations (11.2-4) and (11.10) can he solved analytically to show how everything

vaues along the streamlines relative to the throat of the nozzle. Taking v = 5/3 and using
( )o = 0 which defines the location of the throat, after a little algebra one can derive:

B vl ey o
130“ Vo 3 3 _VQ '
- = 3/2
p |4 1(&-’)“ N
------ S I 1)
w378 Uh
# ')‘5/3
P4 % : .
- - = i Ill3
T (m) - (H.13)

Po(U7) and [M)(" } are the values at the threat of the nozale whichis
Ly = V/ 2k (&w Appendix A tm ) (lumonstmtmn tlmt

where By(17), Vo(U), 1
~ also the Mach 1 surface Vo =

- 1o = (o)
L.qu.mon (ll 11) van be uwert(d tsing ihe qzmmc toz s

" B i Bl
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Equations (II.12), (II.13), and (II.14) express V,p, and P in terms of the magnetic
field and they are plotted in Fig. (1a).

For a paraxial llux tube which is thin enough so that nothing varies over the radius,
these equations give the complete solution to the MHD equations (IL.1-5), the quasi-1-
D solution. In addition, these equations (11.12-14) represent exact relations between the
variables, along any streanline, for the full 2D problem. The positions of the streamlines
themselves can be determined in the manner described below. For the moment, pretending
we have paraxial flow, we show in Fig. (1b) a quasi-1-D solution for a nozzle formed by a
paraxial flux tube produced by a single unit radius coil, for which B/Bg = (1 + 22)73/2,

For a full 2D nozzle configuration, radial profiles are determined by the perpendicular
* (cross-field) component of Fq. (11.9). Iu order to utilize that component, we first integrate -

7 By, (112) aud (I1.10). That gives

it can be shown that

V:_ 4 P Y, 2 \RW) :
—t ———=H(U) = : : 15).
5 + —-lp _ ( )= _(2 1) 0) (II,l))
and B
Pp™ = S(U) = Py(U)po(U)77. (11.16)

Here, H(U) is the enthalpy of the magneto-fluid, and S(I7) is closely related to the entropy
density of the fluid.
Equation (11.16) can be used to express the pressure gradient as

vp= p(? <?{"}fi {—j) - .,’:,j‘]'% (I11.17)
- Gom,biuiug this with ,IS_q. (1L.9) gives:
| o | pwi:- _}Ll,ﬁvsﬂv )V V= d'x (s
i leu, tgsi;}g If;qs.. (I LG). _@1d (ILT) Vancl the Vi_deAntvil-y
: . U\m vy [v (f:;')] w L

o _(?f _!"y
,[" TR ““] '

;'t.-.»lz'nulf'” NS '\" a |  :
. J “ B« \ ( ,f')w B R 111




Combining this with Eq. (I1.18) yields:

vu

v
' ovs— v (Y vusv. (Y vy =0, (II.21
1 2 2 ‘

pVH —
and since H, S and ¥ are functions of U, this reduces to the scalar equation:

v. (‘”) vy (235) - o+

pr?

! [p7S' =0 (11.22)

This is the master equation for obtaining the general solution to the MHD Eqs. (IL.1-5),

“the full 2-D axisymmetric steacy-state solution. It determines the stream function U(r, 2)

in terms of the 3 arbitrary functions ¥(U), H(U), and S(U7).
The density p must be expressed in terms of U, which can be done by usmg bqs :

- (IL12) and (1[.14) and noting that

g lw vu
L r | (I1.23)

By (]VU]) (]VU])
" Jo .7/ maxalong constant U

from Eq. (I1.8).
Some additional insight can be obtained by using the identity J'x B= B VB-vB? /2

to rewrite Bq. (I1.1) as:

;‘ — 2 o o
K '+v(m%«)=B-VB | (I1.24)

then, using VeVi B=Bi i V= 5; and 8; = I(7t where s is distance along the

streamline, I is the curvaturve and n is the normal vector, g, (ll 24) can be decomposed
into tmxgeuhal and normal components as follows: :

. ov ar - e N
»f: ‘r 75; "it).‘; ) ' . - - 111.25); o
(Bzwpl’a)lx = (P B) ) : o (1L26)

~ Eq. (IL26) shows that wherever the streamlines ave steaight (K = 0) the pressure must
. he halanced by maguetie field pressure in the novmal divection. It ollows that in evder to
. have magnetically confined, transversely non-uniform plasma pressure in the computational
. -modeling of the meridional magnetic nozzle, the transition from the plasma reservoir to .

- the nozzle entrance, with the attendant eurved magnetie field lines, mnst be included in ~
the equilibrinim, and the yeservoir must have a magnetic field with g = 1. (Heve, 39
- the vatio of internal plasma pressuve to externad magnetie pressuve.) The inclusion of the -
- veservoir will wqun‘c a lmd\' hlted cumdmatv s%lem wlmh coniouns to-the shape i the
' ‘mwle plns veservoir.. , . : : :




B. The Quasi 1-D Solution
The simplest solution to Eq. (11.22) would he an unmagnetized low with na entropy
or enthalpy transverse gradients (i.e. ¥' = H' = $' = 0) in which case the problem reduces

to \vigl
V. ( 2):0
pr '

AU =VU - -Vinp (11.27)

or

where A* = 72V . »72V, If the curvature of the {hroat is low enough so that Kr « 1
everywhere in the nozzle then the deusity will vary only along the streamlines and not
across them. Then VU - Vp = 0 and Eq. (IL.27) reduces to just A*U = 0 which is the
same equation as for an incompressible potential flow through the same nozzle. This much
simpler flow can be described by a stream function ¢ and a velocity potential y as:

7= Vi x V8 = Vy (1.28)

where A*i» = 0 and V2Zy = 0. Since the general problem will have an approximately
siinilar flow geometry, the functions 4 and x make an ideal coordinate system for the
general flow problem, as well as giving the exact solutions for the quasi 1-D case.

The components of 11.28 are:
PYr =TX: (11.290)

Po = =Xy (11.29b)

which determines the functions ¥(r, z) and x(r,z). These equations may be inverted to

give the inverse equations:
' O - (11.30a) -

=My . | | . (11.306)

which determines the inverse functions »( d-, x) and =(¢,\ ). They can he wmbmecl mto a
: -smgle second order equation by cross chﬂewutmt ing ancl eliminating z: '

) (www+(%)':0' ey
or, if s = rd S ST L
i Sop+ ( Y) =m0 UL
. |

 This equation can be solved analytically in tlw &pvcml case where w]mnu ion of vurmbles, e
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where the separation constant has been arbitrarily chosen equal to 2, which merely
determines the scale of units for i and y. These equations are easily solved giving

s(d, x) = (24 — $2)sec®x
and hence the solutions for r and z are:
(4, X) = (29 — ¢*)?secx ' (I11.34a)

P, x) = (1~ ¢)tany. (11.34b)
With a little algebra these equations can be transformed into
2 52

20 =92 (1§

=1 , - (I1.35a) -

and
2 .2

T z

j— b4
secy  tan®y (17.35b)
which shows that the lines of constant ¢ (for ¥ < 1) are hyperbolas and the lines of
constant \ (for |x| < w/2) are ellipses. Therefore Eqs. (11.34) can be used to describe a
coordinate qystem in a hyperbolic nozzle with 0 < ¢ < Yae < 1 and ~m/2 < x < 7/2.
They also give the solution to the quasi 1-D flow pnol)lem which is just U =,

For more geueml geometries where separation of variables is not possible, I‘;q 1132
must be solved using computational means. This qmmlme.u' elhphc equation is solwcl
numenca.llv by mteg,ratmg the hmte—chﬂeremecl version of :

.:e;+ué==sw<s.\/s>\_: - L)

_in time until a steady state is veached (3§ = 0) The m‘tnhcml tuue step is chosen sumll o

o enouz,h to sa.usiv the Coumnt. condition

e - o
Y ( R D ) R ¥ 7 1 N
. : (A#[’)a Stmn(b-\t.\)“.‘ : : R R
and the numerical dmnpmg, caellicient v is chosen to maxinize the emwmgence rate . -
- (typically v~ 4.).
The solution of 1132 alen l'eqmres specifying lmunflm*v conditions at’ v = 0 and /N

"«mtl at X\ = 0 and Ny AU € = 0 we have s 22 28 = 0 and at @ = @y we neel

s wuv) or Pyatr(€) where € is avclength along the wal, This vequires an itevation which -
ostarts with a guess for re(y) snd then solves Bq. 1.3 That solution ean be ased 1o

o calenlate €(n) and then #(0) is wsed to get w new estimate for r...(\) This iterabion
oasually converges in 2060 xwps. pmvuhm.llw nozzle b fdeg Jdst o everywliere. The -

:'lmuudw*v wudmon uwd .st \ 0 aml \..m is -.nuplv tlml thv s.lrcumlmr.s be sh.ubhl w

. _lfi'i"

2 "u-au(\) But rwu(\) is generally wnknown.: It is more desnable to specify - )




K =0 where K is the curvature. The symmetry condition g’ 0 can instead be used at

y = 0 if appropriate.
An approximate analytic solution to the inverse equations 11.30 has heen found and
. is valid wherever Kr .y < 1:

o Jahs 2 s o 211/2
(3, X) = [%Yﬁ;:b) - s'"(lﬂt/) Z¢;;) } r(0) (I1.38a)
2(,x) = 2 (0) + (I%) (1 f'[; ) rw(() (I11.38b)

where ¢(€) = tan™(r},(€)/2},(¢)) and {(x) is obtained by solving the ordinary differential
equation:

d 20
dx  1+cos¢ (11.39)

~ This approximate solution is used as a starting guess for the iterative procedure described
earlier.

A coordinate solution for the JPL nozzle!! is shown in Fig. 2. This also shows the
streanlines for the quasi 1-D flow in the JPL nozzle which is described by U = 4.

C. The General 2-D Solution

1. _Numerical Methods. The general solution to Eq. 11.22 must be computed
numerically. To allow for arbitrary geometry the (¢, x) coordinate system will be used
with the domain ranging over 0 < ¥ € Phuax a0d 0 < Y < Xynaxe Here ¥ = 0 is the z axis
aad ¥ = Yyax 15 the wall, x = 0 is the entvance to the nozzle and X = Xmox 18 the exit,
'l‘he houndary conditions to be applied are 7 = 0 at ¢ = 0 and U = U,,0e at Y = ¢hax (50

Vi = 0). At x = Othe simplest coudmon is to require U /8\ - O which just means that

the flow enters the nozzle normally (i.e. Vxn= 0). The boundary condition ab x = Xyax - . 4
is much more complicated and will depend on what type of problem is being solved, so =

~the code is written to allow for an ax‘bm'my boundm‘y wudlhon of the form BU/G\ J _—
‘where g may depend on U, : _ :
The stream f\mclwn is. eap&utdud as

N M

“wheve Uy is llle qunﬁt 1 1 solution s.\mh ing the mlmmﬂj;,mmm honndavy conditions, If

the muts of U are clivsen so that Upex = ¢iae then this is just Uy = ¢\ The U)o

o are aset of basis functions sahsfvmg liomogenons boundary conditions U, = 0 at ¢ ~ 0

*and Yy and OU; /8y = 0 at \ =0 and y e The code uses bi-eubie B-splines with ilw';

.7 stated boundary conditions, centered on each of the N wesh points, The Byig\) areaset
2o of loval basis functions which will control the howndary condition at the eXib\ 7 e
2 Thiey must satisfy the sante homogeneous boundary condition as the U at ¢ =0 .\ml c..m

0 vy By = 0), bt they will have an inliomwogeneous bomndary condition 0B, /iy =1
SN = Nnaxe The-code also.uses hi-cubis Bsplines with. the stated boundary tt){l(hh@“fg;




~ point, which will also be referved to as the throat of the nozzle, The equations will be'

for the M b, functions, but they are centered on “ghost” mesh points just beyond the exit
and they only extend 1 cell length into the computational domain. Notice here that M is
just the number of radial mesh poiuts, and N is M times the number of axial mesh points.

This representation for U(3, \) {Eq. 11.40) is substituted into Eq. (I1.22) and matrix
elements are taken with each of the N U; to get a system of N nonlinear algebraic equations
‘depending on the N coeflicients ;. and the M coeflicients b;. After integration by parts

these equations. ta.ke the form

Fj(a],ag,...aN,bl,bg,,. bat) =
' ' I r 72 ‘

. where j = 1,2,... N, '

, The integrals are done using a 4 x 4 point Ganssian qnadrature rule on each cell and
. hence require the introduction of a 4X refinement in the mesh. This subgrid is unequally
spaced according to the Gaussian quadrature convention which requires that the mesh
points be located at the zeros of some appropriate Legendre polynomial.

If the b; are known or if they can be expressed as functions of the ; coefficients,
then the system of equations in 141 completely determine the solution. If the b; are
unknown, then these equations must be supplemented with M additional equations in
order to determine the additional M unknowns,

The code solves for the unknown coeflicients using the IMSL subroutine ZSPOW
‘which applies a modified Newton’s method to find the roots of a nounlinear system of
- equations. It typically uses N = 9 x 33 mesh points and M = 9 houndary points and takes

about 1 minute to find the solution on a Cray 1. : _

. 2. _Unmaguetized Flow. The first set of solutions that will he discussed ave cases:
of ummxgnehze,d flow, which means ¥' = 0. Witheut a magnetic ficld there is only one -
mtsml surface, the Mach-one swiface, where the flow equations change character from © -

- elliptie to hyperholie, The Mach-one surface is located at-the point en each flux tube
_whete the cross sectional area of the flux tube is & minimum. This is a choke point in the
flow and must have ¥y = €%, that is the flow speed must equal the sound speed. at this |

o elliptic upstream of the tluoat and hypex!mlu dowustxeam of the tluont l"x‘om Eq (ll b)_*_ o
it can be seen that ' vt L e R
l = ; R ,'(__11.42)__;’;

wlm h shows th.\t iw- is the inverse arew fmwtmn Ior each thnx mlw 'I‘lns means that

“the Mach-one utwi.u'@ is lucated lw hmhm, wlww LY ’1 s nmmmum. Smw ‘o 2 ( o it llus_ o
pumt 1t follows thal o .

Ja‘o Pufo o ﬂo\/;o*: & \/11’0130

o .":’.:tl_l.u_ns‘,' using ({42 . L N
-l = -(l s"
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- Using equations 1115 and 1116, Py(l7) and po(U) can be related to the entropy and -
ent.l_m.]py Mnctions S(I7) and H(U) and 11.43 can be rewritten as:

4!

(l‘ig’lz)um = v$(U) [2’ (7 " 1) H((g))} i. (I1.44)

This equation must be satisfied on the Mach-one surface and gives the extra conditions
required to determine the boundary conditions at the exit of the nozzle. By requiring that
Eq. (I1.44) be satisfied at each of the M points where a longitudinal grid line intersects the
Mach-one surface, a set of M additional equations are obtained which will suffice, together
© with Eq. (11.41), to determine the other M unknown coefficients by, b, ...bas. The fact
that the coeflicients caly adjust the boundary condition at the exit, while Eq. (I11.44) must
be satisfied at the Mach-one surface might at first glance seem to be a serious difficulty; but
since the region between the Mach-one surface and the exit is hyperbolic, the information
at the throat will be transferred along characteristics to the boundary where it is needed.
It is to be expected that if any part of the region hetween the Mach-one surface and the exit
were clliptic, this procedure wouldn’t work. This procedure is the ouly one that has heen
developed and built into the code so far, so our “direct method” code for finding steady
nozzle flow can only be applied to problems which are hyperbolic hetween the Mach-one
surface and the exit. All muna,gtm*'w% uozzle flow problems ave of this character, but
many magnetized nozzle flows ave sivi. This problem will be reexamiued in later sections.
If the conditions in the reservoir are near equilibrium, meaning (in the absence of
a magnetic field) no pressure or density gradients and negligible flow, then the entropy
- and enthalpy functions S(U) and H(U) will he constant, hence §' = H' = 0, This is the
- most likely situation to he encountered in a non-maguetic experiment and will be the main
" focus of this section. The compressibility of the gas will be assumed to be v = 5/ 3, the
- - appropriate value for a hydrogen plasma, unless otherwise noted, -
o 19 igure : 3 shows the grid used for a hyperbolic nozzle with wnit radius at the throat
and a 45° opemng hall angle at. each end. Every fourth line constitutes the coarse mesh,

e ‘eynally spaced in ¢ and X, on which the cubic splines are defined. "The vest of the lines

_form the gaussian-quadratuve subgml used for doing the integrals in Bq, (IL 41). Fig: 4

:slm\\s the streamlines, which ave almost the same as for guasi 1D flow. Fig. 5 shows

- the inverse sqnare mea function (pV)2, and Fig. 6 shows the same. function plamzd along -

- streamlines, Fig. 5 also shows the location of the Mach-one suface. Tig. 7 showsa . -
S contour plot of the ve!ot‘ltv and Pig, 8 shows the nmgmmde of the velocity plotted along
S thestreamlines, Figs, 9 and 10 show the density, in contours and along streamlines, T

' Figure 11 shows the grid for the JPL m)zzle” in wnits of inches, Fig, 12 shows the - -

:'strcnxtanllnn\es,. Figs. 13 and 14 show (pr)?, Figs. 15 and 16 show the deusity, and Figs. 17

Zoand 18 show the pressure. Notice that there is a shock near the wall just downstveam of -~
- "the threat. The solution is not well resolved in this shock region since the code uses eubic
- splines which have a high degree of continuity and connot vepresent a shock very acenvately,

L The vest of the solution however should still be accumte Fig. 19 shows contonrs of the "
g

- Madch. wumber. This caleulation, like all others, nsed ¥. 2573, For pm‘pew, of comparison *.
o experiment, the JPL nozele was redone with ¥ = 1, 4, e value for air. The solution "

S essentinlly identical to thes = .)/3 case, but the Mach number vontowrs weve slightly
Y dnileum ami e’ shuwn in. l%. N l' 20 .xlw slwws tlw dam !hat was. smnmm.l in  ":




the JPL experiment which was done using air. The data was copied out of Ref. 11. The
excellent agreement with experiment indicates that the code is working satisfactorily.

'T'he next unmagnetized case to be examined has a pressure profile of the forin
Py ~ (1 -+ €U) but still constant density, pg = 1. This corresponds to choosing S(U) and
H(U) ~ (14 eU). Since this assumes the existence of a pressure profile in the reservoir,
the reservoir must be specially designed to allow for this. For example, it could consist of -
a set of nested concentric annular gas feeds run at different pressures.

Figures 21 and 22 show the streamlines for these nonuniform pressure cases. Fig. 21
has € = —.02 which makes the pressure drop near the wall. Fig. 22 has ¢ = .02 which
~corresponds to increased pressure ncar the wall. The new feature in these solutions is
the presence of vortices in the nozzle entrance region. These vortices can be understood
by noting where the high and low pressure regions are as indicated in the figures, and
observing that the gas flows from the high pressure regions to the low pressure regions. In
these examples there are low pressure regions back in the reservoir as well as at the exit,
so sonie of the gas flows back into the reservoir, creating the vortices. If the coeflicient ¢
is increased in magnitude, the vortices just get bigger. In order to have a pressure profile
(confined plasma) and still have radial equilibrium (no vortices) there must be a nonuniform
magnetic field with the field pressure balaucing the gas presswre. This situation will be
addressed in the next sections.

3. Magnetized Flow. We now tur to the consideration of magnetized flows, the
main purpose of this study. The magnetic ficld serves two essential purposes; confining
the plasma so that it won't be in contact with the wall, and providiug thermal insulation
to reduce energy losses to the wall. First we shall consider a proportional field profile

~ {magnetic flux density proportional to mass flux density), which provides insulation but

0 not confinement, and we shall see how the introduction of a magnetic field significantly

S o2 ineveases the mathematical complexity of the equilibeivin, Next, a sharp boundary mocdel
o will be considered which will allow us to examine situations with both confinement aud .

~ flux that-can be imbedded in a nozzle without quenching the steady flow of plasma. Finally,
~we shall discuss the general problem of finding an equilibrivun with ditfuse magnetic profiles -
and the comphcatmns enconmtered ina proper twahnent of the bonndary eonditions, -
e A l??opmhmml Field Case.  To get a pmportmnul fiekd- prohle we
v‘tuhe \l’ mnsl. \’\e wm e-ull nwnne eqml hrmm mnd;tmns m Hw e&ervmr mcl use -

},;nt»w lhrev ¢ whml smtaem wlm 0 Nw vqmlulwmm equm ons dmm,v vhmmlc-r imm elhphc .
1o lwluwlmhc““*’ The Mach-one swrface where the tfow velaeity 1 reaches the sound spred
Vo s still a eritical suctuee, hut \\hm* wv now two: 'mm‘e‘ the Altvén swiace where =
o the ﬂﬂw spewd reaches the Allvén speed V" B S andd e msp ‘-\Hl\i(‘? wh@re Mo
R uhea Uw.—w called cusp spmd 1 _ (’ - 'wlm'e ( N is delm&l bv : B

S H_%*fl?’»)_ .

S hm‘e nre two paw-shlo wr .mu-nwuts for ‘lu* -n|!wm il il wnl sar lm s dvpem.mt.. on the- E
“atrength of the magoetic field as ;,weu by the constin ¥, To g gel u gimensiouless wigaswre
ut tiw lwkl Ml‘cng.,lh. we. rlelmc € s fpﬂl‘ wlww ,tg is tiw dew-m: ul the pLu.ma ul llw

Cinsulation in a simple analytical manner, and theréby we will fined a imit- to the amount of -




throat « f the nozzle (this assumes MKSA units with o = 1). Now ¥' = B/(pv) and
at the throat of the nozzle Vo = C,, which implies that o is the ratio of the Alfvén
eed to the sound speed at the throat of the nozzle: « = (40/Csp. Also, using
°C :;o = (yPo/p)*/? it can be shown that the plasma beta at the throat is related to
a by the formula 3y = 2/(va?)

The critical value for a is @ = 1. For a < 1, (weak field) the Alfvén critical surface
will occur before the Mach-one surface and the equations will be elliptic from the entrance
(V = 0) up to the cusp surface (V = ('*), then hyperbolic from the cusp surface up
to the Alfvén surface (V = ('), then elliptic again from the Alfvén surface up to the
Mach-one surface (V = C'g), and then hyperbolic again from the Mach-one surface to
the exit. Since the region between the Mach-one surface and the exit is hyperbolic the
same boundary conditions used for the unmagnetized case are still applicable and the same
code can be used to solve this magnetized flow case. If & > 1 (strong field) however, the
situation is different. The Alfvén critical surface will occur after the Mach-one surface
so the equilibrium equations wili be elliptic from the entrance to the cusp surface, then
-hyperbolic up to the Mach-one surface at the throat, then elliptic up to the Alfvén surface
and then hyperbolic from the Alfvén surface to the exit. Now the region hetween the Mach-
_-one surface and the exit is part hyperbolic and part elliptic, so the boundary conditions
are much havder to implement and a nmore sopliisticated code would be needed to compute
these equilibria, if they even exist.

The present code has been used to compute magnetized flows in meridional magnetic
nozzles with a ranging from 0 up to .8, No flowing equilibria with o above .8 could be
computed, Flgmm 23 through 36 show solutions for the hyperbolic nozzle and the JPL

- nozzle with o == .8, which corresponds to a beta value at the throat of about 1.9, The

amnst striking feature is that they look almost identical to the unmagnetized flows shown
“earlier, The only difference is that the maguetic field seems to stiflen the flow somewhat
‘and make it closer to heing one dimensional. This can be seen most elearly in Iigs. 25,

~ 29, 32, and 34, The radial variations in the flow variables ave greatly reduced,

The fact that no solutions could be fornd for a > 8 -may be an indication that there
are no solutions in at least part of this range because the code should have been able to

- find solutions-up te o = 1 if they existed, This is only an indication however and not

‘:-i:.'fbelnnd such a Tiitation if it.is veal.

" n prool. Farther fnvest i(..anons would be' 1'eqtm'ed tu full? \mderatuud the phymm issues

b, Shavp Boundary. Mcdel The shmp boundary maodel wnmt« ﬂf an

ol s

- ';_‘tummwvmvd ﬂ@w surrontded by a vaeni field vegion between the plasa and the wall

‘with a singular enrvent wid vorticity sheet at the interface, "Ing is the simplesi way to

- medel n magaetically contined flow bevause the nozzle is divided into two separvate vegions,

= eavh lnmm., a very simple solution. The bowitdary vondition that st be satisfied ot the

- Cinterface is just that the pressure of the vaenin field balance the plasmia pressure, which
Cowonled be known frem the wumaguietized flove solation. T the vadisl widtli of the vacunm

“tield vegion is 8(2) and the vading of tie nezale wall i 57,4 %) anel it the v vegini is
tlun mmug..h . tlml :5(«.,) & rw( ) evewwlww thvn thn m.x[.,m:tn held wnll hs: gwen bv
l s [ U 4(» :
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- nozale withont quenching the How. The vading of the interface will always be snuallest at- -

o '_'_,‘ﬂm. lmm

with the plasma pressure at the interface P, (z) one obtains (in MKSA units)

1 <__-_‘1L~ - )2 = Po(z) (11.47)

20 \2mry(2)6(2)
which may be solved for §(z) to get:

v
911'1 1l‘ \/2“0Pw z

§(z) = (I1.48)

An example of this type of solution is shown for the JPL nozzle in Fig. 37. The central
unnagnetized flow solution is just copied from Fig. 12 and the pressure at the wall P, (z)
from Fig. 18 is used in Eq. 11.48 to compute §(z) assuming that the amount of flux is as
needed to make 6 = .1 inch at the entrance.

If the amount of flux in the vacuwmn region is increased, é will increase until the
inequality & < r, is no longer satisfied. An analytic treatment is siill possible however, if -
a long thin approximation can be used. This wonld amount to assuming that dry, fdz < 1
everywhere. ln this case the magnetic field would be given by

\p R
= 6 ) (H49)

. wherev (2 )mthe, ra\(lmsolthe plasma-v‘zcumumtuhw Then Eq, 1147 would be modlhedi

to : : . -
AV o \I; 7 g s o - L
T jgvm&() o u

‘ ;-,wlm,h c.m be solvc(l to. bwe the lcwhon of the mterfa"e.

\1!

rl( ) = Iu'{“) = . (11.51)

/"Mof ( )

. Notice that tor a g,wen How w;th soie npmhe pressure F (»)4 .md SOME - epizmhc ;.,mmetw >
© il )y as the flug is inereased the vadive of the interface st dedr sase; but sinee it cannol -
he simadler than zeve theve will he aZimit 1o the amount. of fluxthat can be present in-the -

- the thvoud of !he uoz..lg, ane nl lms vahw s’ eqnnted to 2er0 then Lq. ll..:l gwos fm‘ the .

q’mh m’u \":-I‘ol; : PR “I 5

wlwwa s the mth of the !lmmt e £y is Mo pressie at’ tho Hmml 1wlmh is wlmed' L
Lt "uc preseare in the veservoir by Py 30 the wmount of Hus execeds Uhis Tt then -
. the wagnetic field will be too xlmm. to allow oy hlumn.\ to flow out of thie vazervoir aml. T
‘][tlto wszzle will he tﬁlml ofl.. ‘This s sometimes velerred to as “iniling” the nozzle, Figave _'ii L
‘ 38 showg o sv hematie vepreseitation of a negide which is cloe to being stutled, S
T I ety ds bebawe the stuiling Fntit given by Ko 1182, then the sharp Imuml.w\':.’“ Lo
j~equ!lnbuum wnli alw\w q;.t\_.._md__mw e mh‘r llm( ~h§,hllv duluw ethln Y th.u aw._




close to the sharp boundary profiles should also exist. Clearly then, an equilibrium nozzle
“. flow with magnetically confined plasma should he possible, though not necessarily easy to
© compute if the profiles are diffused.

The flux limit in Eq. 1152 can also be expressed as a magnetic field limit in terms
of the field at the throat By:

\I’m.;:_c_ = \/ZI.I-QPO (11.53)

To

‘BO mazr —

or in terms of the local beta at the throat Gy as Bo min = 1. It is interesting to note that
in the previous section with the constant field, no solutions could be found with 8, < 1.9,

~ - which is close to the sharp boundary beta limit of 1.0; but it is unknown whether these
"< two.limits have any fundamental physical connection.

" ¢._Diffuse Field Profiles. The general case of a dlﬁtxse field -profile will
have a very complicated arrangement of critical surfaces. Figure 39 shows one possibility
for an equilibriuin which is only slightly diffuse and still close to the sharp boundary ma-lel,

= The diagram is divided into 5 different regions labeled I through V. In region I, there isio

‘magnetic field so the Alfvén speed and the cusp speed are zero. The pressure and hence the
sound speed is high so the flow will be subsonic aud the equilibrium will be elliptic, just as
- for any unmagnetized subsonic flow. Jn region Il the magnetic field starts to build up, and
~ the flow can enter the nozzle in this region subsonic and sub Alfvénic; but the cusp speed is
_always smaller than both characteristic velocities aud the flow can enter the nozzle above
‘the cusp speed, thus producing an equilibrium that is hyperbolic in this region. In region
III, the cusp speed will reach a maximum and be larger than the entrance velocity of the
~ fluid, so the fluid, so this region will be elliptic, In region IV the pressure is nearly zero
~ so the sound speed and the cusp speed are almost zero, but the magnetic field and heace
~ -the Alfvén speed are high, so the flow velocity will be above the cusp and sound speeds,
- but below the Alfvén speed; so the equilibrium equations will be elliptic. [It is essentially

. just a vacuum field.] In region V the magnetic field is very small and the flow has crossed

- the Mach-one surface so it is supersonic and super-Alfvénic and this region is therefore
hyperbolic, Table I1.1 summarizes the relationships between the various velocities and the
*character of the equilibrium in the five different regions,
The difficulty with solving this type of problem numerically is now readily apparent.
The region between the Mach-one surface and the exit is not purely hyperbolicj it has.
elliptic parts, and the division between the elliptic and hyperbolic parts cannot even be
- specified ahead of time. It must he found as part of the solution. Since the present code
requires the region hetween the Mach-one surface and the exit to be hyperbolic, it should
not be able to solve this type of problem. Several types of diffuse profile solutions were
attempted with the code, but as expected it did not work. The code would not converge to
a solution.. One possible method of overcoming this problem would be to use a code based
on a-time-dependent uwthocl 'lhe merlts of tlllb alternative appxomh will be dlvacubsecl in
Chaptex 11 ) : '




TABLE UW.1. Dependence of the character of the PDE's
describing Ideal MHD flow on the relationships amongst
the several characteristic velocities and the fluid
velocity. (Here C* is the “cusp” speed.)

Region Velocities Character
I Cr<CypV elliptic

B I ¢ <V< C,, 'y hyperbolic
I V<@ <G,y elliptic

IV C*<C<V<Cy  elliptic

V < C,,Ch <V hyperbolic

III. COMPARISON OF THE DIRECT SOLUTION METHOD WITH THE
INITIAL VALUE, TIME-DEPENDENT APPROACH TO COMPUTING. ‘
"THE MHD FLOW PROFILES IN THE NOZZLE

The complicated boundary conditions associated with the complex arrangement of
critical surfaces discussed in the previous section can be mostly avoided by using a time-
dependent initial-value approach. By introducing time dependence, and adding density and
. pressure evolution equations, there are no longer any houndary conditions to be satisfied
“at the Mach-one surface, hence Ee. (11.44) can be dropped. The only boundary conditions

neecled will be at the actual physical boundaries, namely; the walls, entrance, and the exit.
The solution of general magnetized flows will still be a very complex numerical problem,
however, because there will still be the different regions where the equations have different
- characteristics, Special numerical techniques will be required in the hyperbolic regions in
order to insure numerical stability without introducing excessive numerical diffusivity. The
proper treatment of time-dependent hyperbolic flows is still an arvea of active research and
“is beyond the scope of this study.

For problems requiring high resolution, it is also probably more efficient to solve
the steady flow problem using a time dependent method. If M is the number of mesh
points in each dimension, the computer time required to take one time step in & 2-D time

~ dependent code would be proportional to A2, The time step would be limited by numerical
stability considerations (the Courant condition) to 1/M of the characteristic time (sonic
“or magnetosonic transit time), so if t, (in units of the characteristic time), is the time it

~ -takes to reach a steady state (possibly including a steady level of Huct-tmtious)a then the

. time it.would take to compute the steady state would be proportional o 1, M3, compared .
Tt M 0. N 3 fox the direct methocl usmg, a Newton iter atlon. lu general, t, may bc a larg,e

T
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number, but, as a physical rather than a numerical quantity it is independent of M, so
that for large enongh M the time dependent method is always the faster computational
method. The direct method would only be more ellicient for problems where the number
of mesh points (or spline functions) required for adequate resolution was small enough so
that M® < t,M3 or M < ;/°.
Another reason for employing the initial-value time-dependent computational model
is that one may uncover unsteady processes that might actually occur but that would e
inaccessible to a steady state computational model. The shedding of vortices by an airfoil
is a well-known example. lu the nozzle problem, vortices might be induced by plasma
viscosity and a no-slip boundary condition, and would tend to be carried along by the
“flow. If present, such vortices would make a convective contribution to lateral heat and
mass transfer. The presence of a meridional magnetic field would tend to inhibit such
vortices since they would try to bend those field lines. However, the presence of a high
plasma resistivity near the cold walls would allow the plasma to slip across the field lines.
" The balance hetween these two effects is a quantitative issue best resolved by a 2D time-
~dependent simulation with transport coeflicients. Moreover, in the azimuthal magnetic
nozzle, no line bending is available to inhibit the formation of such. vortices.

IV, DESCRIPTION OF A 2D MHD INITIAL VALUE CODE

During the course of this work, one of the investigators (A, H. Glasser) acquired and
learned to use an initial velue 2I) MHD simulation, originally constructed by J. Brackbill
and R. Milroy,'1% with the following properties.
‘ The single-fluid MHD equations are solved in two dimensions (r, z), retaining all three
components of vector quantities. The equations include mass coutinuity; momentum (with
scalar plasia pressure, nagnetic forces, artificial viscosity ~ 1% of the parallel Braginskii

~ viscosity lo smooth the velocity profiles); separate electron and ion temperature equations
_including the eflects of convection, Joule heating, viscous heating, and anisotropic thermal -
- conduction in both species: and the generalized Ohm's law used within the context of

quasi-neutrality and zero electron inertia. This Qhmn’s law includes anisotropic resistivity
(classical plus anomalous), the Hall term, the diamagnetic drift contribution from the-
electron pressure gradient, and the classical “ther mal force” contribution® to the electron-
ion friction.

The simulated plasma was contame(l within a free-boundary separatrix, surrounded
by a vacuum magnetic guide field outside of the separatrix. The vacuum magnetic field
was found in terms of the positions and currents (time dependent) in external theta pinch
coils. The vacuum solution was effected by solving Poisson’s equation for the azimuthal
component of the vector potential, Ay,

The equations were solved on a Lagrangian mesh using au aclaphve mesh algox‘lthm
for rezoning the mesh in order to concentrate the grid in regions of large current density
to resolve regions having sharp gradients in the magnetic field, The motion of the free
“boundary separatrix was solved for self-consistently as part of the over-all time- lepeudcm '

- solution, - : - \ )
“The simulation on & CRAY supercomputer of the formation, and trmslnt.inn-

Seompression of a plasmoid known as the Iield-Reversed Configuration is shown in Iig. .
- 40, corresponding to the FRC- experiments at Los Alamos, This process bears some
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resemblance to the magnetic nozzle concept. The horizontal bars represent the positions
of the theta pinch coils. The formation and motion of the plasmoid is clearly evident.
Because of the limited duration of the research period of this contract on the maguetic
nozzle project and the limited amount of support allotted for personnel on this project (0.8
man-years), we were unable to expend the effort necessary to modify this code so as to
perform a set of systematic runs more relevant to the magnelic nozzle concept. This
situation was exacerbated by the cumbersome nature of the programming and structure
of the code. We believe that recent improvements in FORTRAN and supercomputer
capabilities will allow such simulations to be performed effectively and efficiently, using
codes that are more amenable to trial modifications in boundary conditions and geometry.

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ‘
In Chapter I, we briefly reviewed the foundations of the ideal MHD- model, and
“-then made estimates of various losses from the plasma flowing through a meridional
magnetic nozzle. A wide range of plasma parameters was considered, with maximum
thermal pressures of ~ 400 to 40,000 psi depending on the assumed temperature. Both
. fractional losses and absolute fluxes to the lateral wall were estimated for a 8 = 1 hydrogen
~ plasma fowing through a nozzle with a characteristic radial dimension of one meter. The
B = 1 condition was sclected as representing the least magnetic field for which transverse
- pressure confinement of plasma is practical. The methods and results presented there

are easily extendable in obvious ways to other values of 8 and other nozzle dimensions
“as desired. We also pointed out the importance of the MHD stability properties of the
" plasma in the transition region between the reservoir and the nozsle entrance, and of the
plasma detachment problem at the nozzle exit., We-recommend 2-D and 3-D initial value
resistive MHD simulations to-meocdel those regions accurately. ‘

Some specific results of the estimates of loss processes in hydrogen plasmas with
B = 1 may be summarized as follows for the meridional magnetic nozzle with diffuse radial
profiles. At temperatures near 1 eV, classical resistive cross field mase transport amounts
to a significant (in fact, unacceptable) fractional loss of axially flowing plasina (see Table
‘1.6 and remark following). This situation can he relieved by working at lower values of
‘beta, (At temperatures of 10 eV and above, the mass-loss fraction is negligible even with
B =1.) Thus, we recommend detailed modeling of low-beta plasmas in the 1 eV range in
the meridional nozzle configuration.

With regard to radial thermal losses, classical thermal diffusivities are dominated by
- thermal losses in association with classical resistive diffusion (radial mass transport) at

1 eV for all densities consiclered, and at 10 ¢V for densities of 10'® em™3 or greater (see
Table 1.9). Moreover, these classical losses dominate the Bolin losses in all but three cases
“for all parameters considered (see Table .12 and §.13 and compare with Table 1.11), For
plasmas near 1 eV, it is important to observe that the fractional thermal losses will he
_about the same as the fractional mass losses, and should be mitigated by working at lower
values of beta, For radial nozzle dimensions on the order of one meter, the actual thermal
power density on the wall due to classical transpor, amounts to only a few megawatts per

" square meter, at most, for densities up to 101 em ™3, but can be several hundred-to scveral

thousand MW/m? for densities exceeding 107 em™ (see Table L11), :
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Let us now compare these thermal conduction (and axisymmetric thermal convection) -
losses with {he radiation losses assuming that the nozzle dimensions are on the order of
one meter, We see from Table 1.14 that all but two of our standard parameter cases iay
be treated as optically thin, the exceptions heing 7' = 1 eV with n = 10!® and 101° em~3.
These two “optically thick” cases will not be discussed liere because the edge conditions
of the plasma itself will be influenced by the engineering approach to the management of
the energy flux at the wall (see Chap. I-C, Sec. 2-b). In comparing the optically-thin
bremsstrahlung radiation wall loading results (Table 1.15) with the thermal wall loading
results of Table 1.11, we observe the following. At a temperature of 1 eV, the thermal wall
loading is the larger for densities ranging from 10*3 — 1018 em ™3, hut it is, at most, a few
megawatts per square meter. (Note that the fractional thermal losses due to axisymmetric
convection (radial nass transport) from the 8 = 1 plasmas are large at T = 1 eV’.) At
- 1 eV, densities much larger than 10'® ecm™2 ought also to be precluded by the restriction
that the fractional energy loss from radiation be small [see Eq. (1.97)]. At 10 eV, for
- densities up to 1018 em ™3, radiation wall loading is less than or on the order of the thermal

wall loading, and is at most a few MW/m?. At densities greater than 10'® em™3, at
"T =10 eV, radiation wall loading by far exceeds thermal wall loading and can amount to
several lundred to millions of megawatts per square meter. Iowever, at 10 eV, densities
of 10! em™3 and higher ought to be precluded hecause the fractional energy loss from
. radiation would hecome large [see Eq. (1.97)]. The same qualitative statements apply at
100 €V (radiation wall loading < thermal wall loading for n < 10!® em™3 and no more
than a few MW/m?), with very high radiation wall loads (several hundred to millions of
MW/m?) for densities above 10!® em™3, Also, even if the power were available at 100 eV,
densities ought to be kept less than 10! em™3 to keep the fractional radiation losses small,

Let us now compare the above losses with those induced by non-symmetrical plasina
“dynamics (convective transport) in the meridional magnetic nozzle as discussed in Chap.
- 1-C, Sec. 1-d. First, it should be observed that these magneto-plasma models of “turhulent

transport” are completely different {rom the conventional situation in turbulent pipe flow of
_orcdinary compressible fluids wherein the turbulence is driven by the free energy in the axial
flow field. In the meridional magnetic nozzle, azimuthal g-modes and azimuthal iKelvin-

Helmholtz turbulence are not driven by the axial flow although they may be somewhat
modified by it. (Conversely, in the azimuthal maguetic nozzle, the Kelvin-Helimholtz modes
should be expected to he strongly coupled to the axial flow.) Both of the models we
discussed earlier should be treated as provisional, in the case of g-modes because of the use
~ of a non-rigorous quasi-linear “mixing length” construction, and in the case of the Kelvin-
~ Helmholtz modes because of the employment of unrealistic parameters in the simulations
of Theilhaber and Birdsall (m;/m, = 40, w,, < w). Moreover, the coupling of both
types of instabilities to the axial flow field has yet to be elucidated for the types of plasmas
consicered here,
‘ With these cantions in mind, we turn to the results of the “convective transport”

. investigations in Chap. I With regard to “g-modes,” we note {rom Eq. (1.82) that the ..

. fraction of mass (or thermal energy) lost is mostly dependent upon (A,/R.)Y? where
. A, is the thickness of the edge-plasia boundary layer and R, is a macroscopic length

. scale (radius of curvature of a field line). Moreover, we note from Eq. (1.83-a) that the f e

quasilinear heal flux is 2 x 107 A,/ R)Y 4 n(em 3)T3/2 (eV)[ MWV /m?), again dependent

L upon (Ay/ R)Y2, We also recall that when (Ap/He)-is of order unity, there are only a
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.. magnetized, one might expect the cla.ssxcal\resmtwc boundary layer I)eha.vxor so we take -
A/ )V~ Ry 14 where, R, is the magnetic Reynolds number, Refenmg to Table. L6,

 ‘we see that at 1 eV, R,, V4.0, 5, producing a thick boundary lavel and consequentlv onlv a'

* classical txanspoxt losses). On the other hand, 10 eV and 100 eV temperatures respectwely" -

" expect fractional losses on the order of 10% flom g-modes. The quasilinear Leat ﬂuxus o
‘themselves are glveu in the tollowmg table. :

S 3

few instability growth times avmlmle, but when A /Re ) 1 fhere are ma 1y growth :
times available, ('nnqeqnenth, we" shall c\)ncevtm’re on the shav'p )mmdaw case-when

(A-/R.) 4. L. ln the low dtnsntv regimeé, 1015 — 101 em3, sitce 7o -+ L em’ (see "Vable 7.
L.5), and since the ions are mag,nehzed at these deusities for 10 eV and above, one ~ght
-expect the boundary layer- thickness tobe ‘given by 7. iy 80, for Ry~ 100 cm, we take
(Ap/R)Y?.~ 0.1, {By restricting A, and the g-mode wavelengths to be no bmallex than
T pei, We are crudely 1a}<mg into account the effecl of “Tinite Larmox Radi:s’ stabxl\zatxon
[gvmvxscosx’ty] ) In'the high-density regime, 7o; <"1 em, and at 1€V where the ions are Mot

_few available: mstablhtv growth times. Coonsequently, we do. not expect the 1 eV plasmas to T
be vulnerable to transport from g-mode instabilities (they are aheadv highly vulnerable to

g

yvield R,; ~ 0.16 and R,, 2 0.05. Thus, we see that in all 10 eV and 100 eV cases, for
--these rough estimates it is suflicient to take (A,/R.)!/? ~ 0.1. Having done so, we can

TABLE V.1, Quasulmear Heat Flow from Rayleigh Taylor Modes -
~in 3 = 1 Hydrogen Plasmas for (A JRPP =01 .

qR, =2 X 10~wn(mn—-a)'[&/‘;)[MW/mﬂ

T(ev] 1 - 10 100
R RIS TL 6.3 % 10-(MW m) X |
T 'ﬁ”’- 6.3 1071 H; | :f;i§hjx“5~:z;b'ii /
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Comparing Table V.1 to Table 1.15, we see that the g-mode induced thermal flux
is more than competitive with the energy flux from radiation at 10 eV and 100 el” for
densities of up to about 10'® em™* (where the thermal fluxes of several thousand to
hundreds of thousands of MW /m? are produced). In view of this result, based upon a
simple quasilinear model, we recommend quantitative resistive MHD modeling of MHD
instabilities with nonlinear effects in the entrance region of the meridional magnetic nozzle.

One should remember here that even classical losses will increase at the edge of a
sharply defined plasma with edge layer gradient lengths of order A, compared to what
they would have been for a general diffuse profile. The increase will be on the order of
a/4,) where “a” is a characteristic radial dimension of the nozzle. In connection with
g-modes, we are counsidering sharply bounded plasmas with (a/A, )} ~ 100 as discussed

- above, so a fair comparison with classical transport requires that the edge thermal fluxes =

of Table 1.11 be increased by this factor. Such a comparison is made in Table V.2.

TABLE V.2. Comparison of Classical and g-mode Induced Thermal Fluxes
(MW/m?)inag =1 Hydrogen Plasma with a
Sharp Boundary (A, = a/100), with @ = 100 cm

TleV) 10 100

nlem=3 = 108 92x107' 6.3 x 1073 (Y x x
0% 92 6.3 x 107} - x x
10 79x10 6.3 C29x100 20x10%
100 1LTx10?  63x10  20x10° 2.0x10°
107 LTx10 63X 100 | 2.9 10° 2.0 x 104
10 17x100 6.3 x 108 C29x100 20x10°
10°  LTx10% 63 x 100 2.5x 10° 2.0 x 10°

classieal gemorde | classicnl g-mnde

It is interesting to sec that the classical transport thermal flux slightly dominates at
10 eV but that the reverse is true at 100 ¢V,
' The above discussion of g-mode-induced wall loading has not taken account of the
~ reduction of the g-mode growth rate by the-action of ion collisional viscosity, One would
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expect fluid viscosity to have an appreciable stabilizing mﬂueme on tixe grov»fh rate when
the wave number hecomes sufficiently large that I

k2D = T = gk, (V.1)

where D,;, is the ion viscous diffusivity (kinematic viszosity), and I is the g-mode growth
rate. Making the substitulions k =~ A-! where A; is the thickness of the plasma-field
boundary layer, g = vZ/R,, where v; is t-he ion thermal velocity, aud obtaining D,;, from
" Braginskii? for the cases of un-magnetized (w.; < vy )-ions and magnetized ions (we; > v45),
we find that Eq. (V.1) can be reduced respectixel}{tp

Ar | Aii s o -'>' Ve 7
R ~ (E’:)ijf ,,(};_n-magne’t-lzed lons), | | (V.2-),.‘
and J :'s /’ 2/4
Ar ( T‘C‘i".\ iy.( wc{ \, o / 5 . .
— | = |- — - magnetized ions). V.3
R, AR/ ) Vn;,-). T (wag ) (V:3)

Here, w,; is the ion gyro-frequesicy, r.; is the ion gyro-radius, v;; is the ion-ion C’-oulm\lh .
collision frequency for-90° deflections from cumulative small-angle scattering, and A =
v;/vii is the ion mean-free path, and R, is the radius of field line curvature in the bad
curvature reg,vm of tlie mémdmnal magnetic nozzle, We recall that the ion magunetization
parameter is zahilated in Table 1.8, The meaning of these equations is that they set lower -
limits on (A7R,) below/which the viscous damping of the g—modes becomes comparable
*to the modd.giowth rate; but above which the neglect of viscosity is niore or less valid.\
_ From "falsle 1.8, we find that the ions are ui-magnetized at 1 eV, and from Table L.
that the ion wean-free path is of order of 0.1 cm or smaller. Therefore, at T = 1 €V, our

“uscof A, ~ vem (with Re ~ 100 em) so that \/&\J‘? = 0.1 is consonant with the y ,‘wglec
of ion vrsms','t,v in-the study of the effects of g-modes [See I3q. (V.2).] However, only a few

growth tizaes arg zwmlablﬂ at 1 eV so we have not considered this case in detail. The same

3

-

‘reasoniiig for i 1 Vs trne ot T = 10 eV for densities’eqyal to or greater than 1618 em™
50 that viscosity cén be neglected for n 2 10%-¢m 2 while using (A, /R:)Y? = 0.1, Atv

T =102V em “3 and n 10% em™3, o eyfm thh viscosity incorrectly neglected the g-modes

“still ere bys fmportant than classical .mnapm't
Ou the other hawd, w72 106 eV, fron Table 1.8, the ions ave umgnotwed at all hut
the highest density. Mywo\rer/lrom 'Inblc .5, for dcusxtm of 10'® em~? or higher, we see
that the icn f*vm-}'&dms has (rei/Re) 5005, for R, & 100 em. Hence (roi/Re )% 2 0.03,
and this number 1s ve "duud further hy the factor (wei/vii)?® > 1. [See Bq. (V.3).] Hence,
we conclude that even, i the cage T'% 100 eV’ the lower limit on (A,/K,) can he bronght

down to apout 001 ; w '(hat ﬂ..ch 2 0,1 g;hll provides a valid condition with \\uu('hﬂl’.

1)1‘0(“3'.‘(1 without-beig overwhelined by viscous damping,
ll\us, o estintates of Lieeffects of Rayleigh-Taylor instabilities, that neglecterl the
ackion ol iair viscosity, By ad large should remain qualitatively valid. However, a detailed

_,,qumxt:tame check of this qualitative assessiment is recommended, ‘smco tie lon viscosity - *
“tensor-is complicated, this will be 2 major project. aGl
As vegards the Kelvin-Helmboltz-induced Bolm transport slmulatod bv Theilhaber 7

notc that

'«md Bu‘daall We-

it s«.ales tlle same way as the g-mcdc mduwd tmu&p-:u't but 18




smaller by an order of magnitude [for (A,/R.)!/? = 0.1, compare Eq. (1.83-a) with Eq.
(1.89)]. Thus, it appears to be less important, but this conclusion is subject to the resnlts
of simulations with more realistic parameters.

In Chap. II, we set up the computational problem of ideal plasma-flow through a
meridional magnetic nozzle, beginning with a quasi-1D formulation. Results for isentropic
flow were shown for the variation of various fluid quantities along the streamlines. A
formulation in full axisymmetric 2-D geometry was then set up in order to find the
transverse distribution of the streamlines for specified input profiles at the reservoir-
"nozzle interface. Also, the importance of including this interface in the computation was
emphasized. A finite element 2-D code for completely solving the steady isentropic flow
problem was constructed, with provision for a body-fitted coordinate system to deal with -
arbitrary nozzle shapes (including the interface to the reservoir). The motivation for this
approach, as opposed to the use of a straight cylindrical coordinate grid-for example, was
-to reduce the number of elementary functions needed to represent the flow pattern with
high resolution. The code was tested on a case of un-magnetized flow by making detailed
comparison with an experiment performed at the Jet Propulsion Laboratory, and the
formulation and computational method was thus validated. Additional computations with
this code on magnetized flow were attempted but were limited to wall-confined plasmas.
The reasons for this limitation were found to originate in the complexity of the various
critical surfaces {analogous to the Mach-one surface) in plasmas confined by magnetic
pressure. (Even in the case of wall-confined plasmas, our code was unable to find a steady-
flow solution with beta less than 1.9, although such solutions were found for slightly higher
values of heta. The reason for this is not known.)

On the other hand, we were able to supplement the above-mentioned limitation . .

to wall-confined plasma by analytically dealing with a field-ivee sharp-botindary plasma
~ transversely confined by umbnetic pressure. We showed how to make direct use of the un-

-magnetized flow solutions in this case, and we uwncovered a “stufling limit” that must be
exceeded in order to keep the sharp boundary magnetic nozzle open. We recommend the
“examination of the MHD stability properties of such sharp-houndery tlowing equilibria,
“and we also note that such equilibria are not subject to the detachnent problem. o
In order to solve the flow problem for diffuse plasma profiles transversely confived

" hy magnetic pressure, we recommend the use of tinie-dependent (iuitial value) resistive .
- MHD simulations, as opposed to “direct” solution of the steady flow problem. The initial-
- value approach will not be subject to the difliculties associated with the existence of several
critical surfaces, and it will have access to unsteady flow phenomemul thev should naturallv

- and continually oceur at large times, :
We attempted to acquire and modify such a cacle for this purpose, Imt were inable

~to snitably modity and systeumhuallv applv thc code wnthm the reatmtwua oi our 0.8.

- wman-year effort,
Concluding with mere general observations, it seems natwal to nse the plasnms

~ praduced at elevated temperatures to obtain higher uozzle exhaust velocities in the face
o of the lingiiations of chemical fuels (small amount of energy per atom available), and to

“thereby increase the payload capacity of space velicles (provided that the requisite power

i sonyces te "t"i‘ea\te and drive the plasmas ave available). The meridional magnetic nozzle,

“based upen areservoir of heated plasma, constitutes a conceptual approach to part of

= -suely g syatem., We also recommend further study for t,_hc azimuthal magnetic nozzle (not -~
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limited to low magnetic Reynolds numbers), because this concept uses inagnetic fields
to drive the plasma and requires no special preparation of heated plasma in a reservair,
We refer the reader to the spontaneous heating process discussed in Appendix D, which
naturally leads to heta-values of order unity and also thermally coutributes to the drive,
Finally, we observe that the plasima stability problems and concomitant inefficiencies to
which these devices may be vulnerable can be ameliorated by the introduction of magnetic
“shear. The role of magnetic shear and the extent to which it would modify each of these
concepts is a worthwhile research project.

REFERENCES
1. P. G. Burke and K. Smith, “The Low Energy Scattering of Electrons and Positrons
by Hydrogen Atoms,” Rev. Modern Physics 34, (1962) 458
2. S. L. Braginskii, “Iransport Processes in a Plasma,” Reviews of Plasma Physics,
Vol. 1, Consultants Bureau, New York, 1965, Chap, 2.
Lyman Spitzer, Jr., Physics of Fully Ionized Gases, Interscience Pub. Inc., New
York, 1962,
3-a F. Reif, Fundamentals of Statistical and Thermal Physies, McGraw Hill, 1965,
3-b Ya B. Zel'dovich and Yu P. Raizer, Physics of Shock Waves and High- Temperature
Hydrodynamic Phenomena, (Academic Press, New York, 1966).
4. K. Smith and A. H. Glasser, “Data Base of Cross Sections ane Reaction Rates for
Hydrogen lon Sources,” Los Alamos National Laboratory report LAUR-87-2736,
5-a. A. L. Morozov and L. 8, Solov'ev, “Steady State Plasma Flow in & Magnetic Field.”

in Review of Plasma Physics, Vol. 8, uhted by M. A Leontovich, Consultants: |

Bureau, New York, 1980, page 1.
*5-b, K. V. Brushlinskii and A. L.-Morazov, *Calenlation of Two Dimensional Plasma Fluws -

in Channels,” in Review of Plasma Physics, Vol. 8, edited by M A Leontovach, a

- Consultants Burean, New York, 1980, page 105, .
6. M. Tuszewski, “Field Reversed Configurations,” Nue. I'usmn 28 (1088) 2033,

R '?-a. Basie Principles of Plasma P’U&lc& l)y S. klmmuu, Chap. 11 WA Belumum, lnc..f-

Reading, Mass., 1873,

"'l-"i-b.i:l) Bolun, The Characteristios uf Eleetrieal l)w('lmvv;fs n Muqm tre Pteld.s \A

o Guthrie and R, K. Wakerling, eds.) Chap. 2 (MeGraw-Hill, NY 1949). o
8 J. P Freidberg, “ldeal Magnetehydrodynamic ’llaem'v ol Ma;,uehc I"umon bvstems,
o Rew Med. Phys, 84, (1982) 801, S
' '__8_-!). G S0 Argyropotios, S, T, Demet rmde-,. mul K. Lm‘i\ner u( mnprcssible '-I‘m'_lmkznt, L

7 Magnetohydradynamie Boundary Layers,” l’hJs. Eluids 11 (1968) 2559,

8-¢. A, Bhattachavjee, R taconn, 1. L. Milevich, ¢ . Pavanicas, “Ballooning Stability-of
T ,Amsvnmwmc l’lasnms with bhuucd lzthlnmm I lows," l’hJs. of Fluls B 1 (1%9}1,?*

2207,

8d 8. Chandrasekhar, Nydvadynamice -and lludmmm;mhc btab:hty, "tcc. 92, Ox,lqrtll;ut;

“the Clarendon Press, 1961, B

' 8¢, K. Theilhaber and ¢ K. Birdsall, *Kelviv-Helmholtz Vortex Formation and Py artiele -7

* Transport in a Cross-Field Plasima sheath, 1 Transient Behavior,” Phys. Fluids B 1

(1989) 2244, and “Ielvin-llehuholtz Vortex Fornation and Particle '“l‘mni.pmtt» ina’ 7.

PR L‘roaa-l‘wld Plaa.ma bhc.uh 1L btcmlv S:t.ntc- " I’I:Js. l"hmls 21 \138‘1) 226

- sze .




8-f. S. T. Demetriades, “On the Magneto Aerothermal Instability,” Paper A1A A-81-0248,
presented at the 19th Aerospace Sciences Meeting, Am. Iust. Aero. Astro., Jan,
1981, St. Louis, Mo.

9-a. Arthur N. Cox, *Stellar Absorption ('oeflicients and Opacities,” in Stellar
Structure, [dited by Lawrence H. Aller and Dean B. McLaughlin, University of
Chicago Press 1965, p. 197.

9-b. W. F. Huebner, A, L. Merts, N. H. Magee, Jr., M. F. Axgo, Los Alamos report
LA-6760-M (1977), Astrophysical Opacity Library.

10. 8. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions, D. Van

- Nostrand, Princeton, NJ, 1960.

11. R. F. Cuftel, L. IL. Back, and P. I. Massier, “Transonic Flowfield in a Supersonic
Nozzle with Small Throat Radius of Curvature,” AIA4 7 (1969) 1364.

12, H. Grad. “‘Reducible Problems in Magicto-Fluid Dynamic Steady Flows,” Rev..

- Modern P/zys 32 (1960) 830.

13. C. K. Chu, * Maguetohydrodynwmic Nozzle Flow with Three Transitions,” Phys.
Fluids 5 11962) 550. )

14. R. D. Milroy and J. U, Brackhill, “Numerical Studies of a Field-Reversed Theta-Pinch
Plasma,” Phys. Fluids 25 (1982) 775,

15. R. D, Milvoy and J. 5, Brackbill, “"l‘moidal Magunetic Field Generation dnring
Compact Toroid Formation in a F icld-Reversed Theta Pinch and Conical Theta
Pincly® Phys. Fhuds 20 (1986) 1184,

160 K. L MeKenna, R, R, Bastseh, R, 1. Commisso, C. Llsdahl W. L. Quina, a.nd o

R. B, Siemumn, Physies of Fluids 23 (l‘)‘«(l) 1443,

B 1T, ) QL Fernandez, C. W, Barnes, T. R, Jarbae, 1, Henins, I W. Hoida, p L. Klingner,
8. 0. Knox, G, J, Marklin, and B. L. Wu(..ht. “Unergy Confinement Studma s

o .;phet omaku thh Mcsh l"lux (:ouwrwm, }‘«’uc l’hswn 28 (1988) lo5o. DT




APPENDIX A
THE MERIDIONAL MAGNETIC NOZZLE

In this Appendix, we derive some bhasic results for axi-symmetric MHD steady flow,
“using the ideal MHD model (no transport eflects, no Hall effect, no resistivity) in a
configuration that contains no azimuthal magnetic held and concomitantly no meridional
currents in the plasma.
Ohw’s law is L .
E+VxB=0. (A-1)

In a steady-state configuration with azimuthal symmetry, Fy = 0, and Eq. (A-1)

" becones :
o ~VeB, + V. B, = 0. ' (A - 1la)

- Thus the meridional component of the velocity field Var is always lined up with the
meridional ma&,nct)c field By, = B. We write this condition of parallel tiow as

Vi = aBy. (4-2)

The factor o is generally not constaut.
The mass-continuity equation

V-(ﬂ"")fé-‘!’*” U (.4 3){.,_'-
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where § is a wnit vector in the azimuthal direction. But, —(V x Q) - 0= r“l(f; < V)(rVe).
Consequently, (A-T) becomes

V- V)(rVe) =0 (A—8)

so that (rVp) is constant along a streamline. If we suppose that the plasma at the nozzle
inlet is generated without rotation in the reservoir, then (A-8) implies

1l

Va=0 (A -9)

< at every point in the flow field. Thus, f'M =V,

We note in passing that, with Bg = 0 and V = 0, the azimuthal component of the
" curl of Ohm’s law, V x (V x B) = 0 is satisfied xdenhcallv

We now proceed to derive the Bernoulli equat ion from (A-6). We do this by takmg
- the scalar product of (A-6) with p"‘\’ Since V = Vag = aBM, and B = BM, the (J x B)

term on the ths of (A-6) contributes nothing. Similarly, V x € contributes nothing. Then

p~1V. (A-6) reads
“?‘\7(‘_1‘_./2) + V. (EVP) =0, : (A - 10)
| 2 o |

~ {This equation appears formally the same as for the simple gas-dynamic nozzle beeanse
. -the maguetic field dees not appear in it. However, the shape of the magnetic field lines

~_cannot be taken as given.)
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the thrust is obtaiued at the expense of the thermal energy stored in the reservoir plasma
which 1eplese11ts the convected ther mdl euer gy pet paltxcle in pla.sma plus the woxk doue
per particle in volumetric changes of plasma.)

To complete our discussion of the nieridional magnetic nozzle, we shall make use of
the continuity and Bernoulli equations to obtain results for the flow velocity in the throat
of the nozzle, for the thrust produced by the nozzle, and for the power required to produce
that thrust, all in terms of given plasma parameters and the nozzle throat cross-sectional
area.

For simplicity, let us consider a very thin (quasi-1D) tube of flow, of radius r(z),
containing the central streamline along the axis of synunetry, in which the z-coordinate
represents distance along this particular streamline. The surface of this tube is assumed
to be constituted of neighboring streamlines. Since V. = 0 on the axis of symmetry, V,
will be very small throughout this thin central tube, so we shall set V' = V,. Then, by
writing the mass counlinuity equation, V - (pV') = 0, in its integral lorm over this tube of
flow, pV,mr? = const., and differentiating this result with respect to the z coordinate, it is
easy to show that the following differential relation holds along the thin central tube,

1 (dp I/ dV, 2 (n'r)
) (5 )+ (5 ) =0 A-15
P (d:) i V. ( dz ) r \d: ( )
Similarly, by differentiating the Bernoulli equation (A-14) with respect to Z, it is
easily shown that
: dl’, 2 fdp .
\’( ) r—‘“(-»-)zt) - (A= 18
d: ) p \d=/ ‘( %)

where C'¢ = (7 P/p)M? constitutes the local speed of sound in the plasma. Then, by
substituting foe %(‘éfé’ ) from g, {A-15), we can write Lig. {A-16) as follows.

vEo v, 3 fdr ‘ o
N é_ L i~ 5 . S .

This fundamental relution provides mstght intor the loeal ratio of flow speed 1o yonud
speed in ters of the convergence or divergence of the streandines. Eqx, (A-15, A-17T)

are bnowie ag the Hogoniot equations. Since Vo 5 0 and (V5 fd2) 5 0 in the simplest
. picture of acceleruted flow, we see fron (.s\ l T) that i the eonverging portion of the flow
where (drjds) < 0, we st have V2= € Conversely, in the diverging portion of the
O flew, (drids) 2 Qand V2 \ _ The Hmm! of the nogzde is defined to be Incated where
o pdrdde) =2 0, el sinee the How is amclm.tlmg .mallv even al lhts pmuh we st lmvo '
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From the result derived above in (A-17), we found that, in accelerating flow, (%‘,— ~1)
s

always has the same sign as d—’,' Therefore, the deusity p always decreases along the

meridional magnetic nozzle, (dp /dz) < 0.

The fundamental result. (A-18) allows a couvenient expression to be obtained for the
~thrust of the meridional magnetic nozzle in terms of the plasma pressure in the throat (or
in the reservoir) and the area of the throat. For these approximate estimates, the quasi-1D
model of the nozzle will be invoked for simplicity and convenience.

The thrust acting upon the rocket in a steady state is given by

T = (d—’") v, | (A-19)

whexe Ve is the exhaust velocity of plasma and (dM/dt) is the vate of loss of plasma mass ;
Arom the rocket. In the quasi-1D approximation, one can write

dM .
P PoVodo, (A —20)

where py and Vj are the density and velocity of plasma in the throat of the nozzle, and Aq
is the area of the throat. Now, if we accept « = 5/3, then the Bernoulli law (A-14) can be
written

3
%Vz + Q(.-'g = const.,

where C'2 = (yP/p). From this Bernoulli relation and Eq, (A-18), one hnds immediately
tlmt
V=04 = "('sn *IV‘)' ‘ : (A —21)
4 4 _
where C'ap vepresents the value of (s back in the veservoir. Here, we have assumed a
condition of zero pressure at the nozzle exit, so that €, =0, and 2 wndmou of very low -
~flow speed out of the reservoir, V3 < ¢ B
Moreover, since the mlmbahc relation hetween a change of P and a change of p is
maintained (in ideal MHD) along the axial divection (in the ¢nasi-1D approximation), one .
can relate the density and pressure of plasmia in the throat to the density und px'essuw in
.the reservoir. Usmb this admbahc velution and (A -zx) we hnd » .
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From this, and again from (A-21), it follows that

P, & 2 3 1 '
0 fo Sow(~)x<-)m~. (A —23)
Pp PRCS R 3 4 2

Thus, in the throat, the density has dropped to 2/3 of its input value, the pressure has

dropped to half of its input value, and the temperature has dropped to 3/4 of its input

value.
The thrust, from (A-19) and (A-20) may, therefore, be expressed as

= (AppoVo)Ve = (AOPOCSO)(ZCSOJ Ao X (2p9C3%) = Ao X (2710),

T=1 (AoPo)~“(AoPR) | (A -24)

for v = 5/3. Thus, in the meridional magnetic nozzle, the thrust is a numerical factor
times the plasma pressure times the throat area.

It is important to know the strength of the power source that is required to produce
a given value of thrust, The requived power may be found from the power expelled by the
flowing plasma. Neglecting inefficiencies due to thermal conduction, radiation, v:scosxty,

resistivity, a.nd rotation, the expelled power in the exhaust is

P = (Ax%pw) ‘ (A —25)

Le

where the subscript “e” refers to downstream asymptotic values al the “exit.” But, in
steady state, (ApV'), = (ApV )y, Hence - : :
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« This can be writlen as -

’1 he setond term i in (B -2) can be \mtten ug-

To sumimarize the results for the meridional magnetic nozzle, Eq. (A-21) relates flow

speeds to sonnd speeds, Kq. (A-24) gives the thrust, and Eq. {A-26) gives the required
power. lt is important to qualify this result for the thrust with the observation that it is
contingent upon overcoming the “detachment problem.” This critical problem is addressed
in Sec. 1-C. :

APPENDIX B
THE AZIMUTHAL MAGNETIC NOZZLE

We turn now to the case of an azimuthal magnetic nozzle, where the meridional
magnetic field vanishes, Bys = 0. We shall always assume steady axisymmetric flow. This

. configuration contains only meridional currents.

The azimuthal component of Ghm’s law, Eq. (A-1a), is satisfied identically now, so
Eq. (A-2) no longex applnes

Since 8+ (J x B) = 0 just as for the meridional nozzle, the azimuthal component of
the momentwn equation, (A-6), reduces to

~(Vx ). 6=0,
just as before, Here Q= V % V', This result can therefore be written as
(V- 9)(rVp) =0

so that
; (rVp) = const.

along any streamline. We shall assume that the plasmae is generated thhm\t rotahon,_ ’
. (’onwmentlv, Vc vmushes along ull stremulmes,. R : : -

Next. let us cousxdca the uul of Oh's law, o B

Vx(\ xB)
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where 7 and 6 are unit vectors in the r and 8 directions respectively. The third term in
{B-2) can be written as

~(V-V)B = (Vi - V)(8Bs) = ~6(V - V)B,

Tlie sum of these three terms converts Eq. (B-2) to the following,

or, multiplying through by p,
‘fr . — -;
(pBa) (22 ) = 7 +¥)Bo = BalF*- V).

Finally, dividing through by p?, one recognizes the rhis to be the derivative of a ratio, (-ﬁ-)

Thus,
Be\ ( ) 4 (B") |
V.V)| — B-3
( Y (V.V) p | ( )
Noting that
V. i = v (’m' (V. V) (Cnr),

Eq. (R-3) can be transformed to the followmg, ' ,

A [‘fﬂ (%‘")] = (V. )t} = 0,

e S (v v) [t‘n(i{)] = 'u

| o/ |
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. or,

(ﬁf) = Gy -wnst. along, streamluw - L ( B »__4)7 '. r
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We aim to transform the “rhs” into an integrable form.

Noting that Jo = 0 in the azimuthal magnetic nozzle, and invoking azimmthal
symmetry and Vg = 0, together with Ampere's law, poJ = V x B, a straightforward
calculation of “rhs” shows that

But Eq. (B-4) states that (Bg/pr) is constant along a streamline, so the above expression
can immediately be written as follows.

) B2
rhs = —(V-V)(———Q—) (B —6)
Hop.
The differential form of the Bernoulli law is obtained by equating (B-5) and (B-6).
A 2
(V-V)( V24 "—£+-§~)=o (B-T)
~1p  pop

Integrating along the streamline, we have the integral form of the “magnetic Bernoulli
equation,”

2
lpag 2 By e, (B-38)
2 Y=1p  pop :
or also,
) 1 22 1 War 2 . £t
2‘ + 7’_1(3'” ("A -qu ) ‘ (B 80)

~ wheve €7 is constant along the streamline, C's is the local adialmt-ic sound speed, and C'y -
~ 18 the local Alfvén speed. '
From this Bernoundli law, one can immediately observe that in arder for the (JwBg)

“ magnetic forces to accelerate the flow 4 it is necessary that the quantity {B3/p) decreases . - -

, _al@ng,the streamline. Trom the point of view of magnetic body forces, the (J»He) magnetic
- force from the diverging current field accelerates the plasma in the axial direction. The

- diverging cwevents {which requive an outer coaxial electrode) imply, from Ampere's law,

 that By decreases in the downstream diveetion,
©To complete our discussion of the azimnthal magnetic nozzle, we shall derive the

- Ilugoniot equations for this azimuthal magnetic configuration, and shall use them to. . -
. estimate the flow speed, thrust, aud power of a coaxial magnetic nozzle, ' o
With a coaxial nozzle in mind, we consider a thin annular tube of flow of vadins -

1(z) and vadial thickness A(2) with A < ». 1o the quagi Ld .\pmmmmhmn. the amass:- :
'wntuunty uquutwt. can l)e wntlcu nits utcgml lorm over thls tube 5 :

¥ 2l = onste, SRR e ")‘ e

*that is, the above quantity does not vary i lho flow divection, Heve, \'ig the wieridional

T fluw velocity adom, the h\lw Dlih.'u,uhahmg (B- 9) with vespeet 1o 2y the mmxl worclm.uu B

owe find -
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Next, we differentiate the Bernoulli equation (B-8) with respect to z, using the
adiabatic relation hetween P and p along a streamline, P = const. x pY. The resulting
equation is easily found to be

v dp 21 (dBo) ol (dp
v(dz')drcs (dz)chBo(dz) 2 d_)"’ (B —11)

where the local speed of sound Cs and the local Alfvén speed C4 are given respectively -
by

P
= ‘y;, and

2

¢ = _!3_0_
A — *
Hop

Now, by differentiating Eq. (B-4) with respect to z, one easily finds

1 dBe) 1 d'r) <dp)
Bo(dz (d; +- ds (B -12)
Then, by using (B-12) in (B-11), the latter becomes
dVY | 2l (dp) ,.,,-21,(311)_ | o
‘(d.)*s (d..}“c‘*‘,- =)= (B-n)

where S is the local value of the fast magnetosonic speed, given by
$f=ciye Ci

':"l‘he use of‘(B-IO) ‘in (B-lii) thén yieldSQ o -  3' : .' :
. - dV L dAY 1 fdr | - -
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o or, also.
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' '-‘thmtmu:» (13-10, 12, 14) ave the Hugoniot equulmm {or the azinthal magnetic novzle,
L7 At this point, it will be uselul o dlalmmnah twa chlleicu! g..mnwtncul vmsmnsnl the -
:‘.w‘m.xl nzmmllmi nozzle, naely, . R :
’ i Proportional Radius, Variable thickuess, -
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(The practical difficulty is to find the right shapes so that the inner and outer
honndaries constitnte equipotential surfaces of electrodes. This constitutes a serions
computational problem that we do not address in this report.)

Case it r(z) = rg, fixed. Thickness varies. Lot fixed radius of a flow tube of variable
thickness, Eq. (B-14) reads

V2 dVv dA

<S2 1) (dz) A(dz) (B~ 15)
Thus, for plasma to accelerate along the annular tube of flow, the channel width should
be convergent (42 < 0) for V2 < $2, and divergent (dA/dz > 0) for V2 > S% At
the throat itself, V& = S2 and (dA/dz)e = 0. Thus, there is a strong similarity here to
the cases of gas-dyummc aud meridional magnetic nozzles. The adiabatic sound speed is
simply replaced by the fast magnetosonic velocity, but the constricted (annular) throat is
conventional.

Substitution of Eq (B-15) back into (B-10) yields

o (d’)) ¥ (‘(‘/28/231 1a ((jzA) 0. (B - 15q)

Trom what has heen stated above, this equation demonstrates that, for a flow accelerating
along the annular tube, the density p(z) always decreases _monotonicaﬂy along the tube,

bgge u. éka = Ao, hmd Radms varies. Now Eq. (B- 14) xends
) (‘,3 ;53)‘1 ((;‘;)F(C?“( ) (d’) R (BNIG) S

o 1'm‘ fixed mnmhw tlnt’l«.nc&s of vm'mble radma, we (.uscem the passil;iliw of “anomalous”
- behavior when €F < €3, : A
' For ('8 = (4 & (hngh»hctn plﬂsnm) W gee !lm* nwolemhou of the plasma along the
“tube requires mnve;geuco (8 « 0) when ¥# & 52 aud divergence (45 - 0) when V2 > 52,

At the throat, V¢ = 8§ with ( d' )0 0, ‘lhexefme, in the lu(,lvbeta case, the thmat

" appears to be ‘mdmm‘v :
L For €% (mid Plasma or lnwshem pln«ma), we see that acceler mon uf plu‘-um -
~along the !uh@ rcqnmes tln'my:uw when V2 ¢ 5% qud eonvergence when V2 582, Again,
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In the case of cold plasma in strong magnetic field, the equation becomes (with

S2 =~ (2),
1 (dp V- ')("' dr ,
2N L TERAL (T g, - 16
p(d:)* Vis (2, ((z-) 0 (B ~160)

From the preceeding remarks about Eq. (B-16), one reaches the following conclusions
ahout the behavior of the density of cold plasma iu a strong azimuthal field in a tube of
constant annular thickness, by examining Eq. (B-16-b).

For V? < (%, p(z) decreases along the tube. (Divergent radius).
For (4 <V & <207 e p(z) still decreases along the tube. (Convergent radius).
For V2 > 202, p(z) increases along the tube. (Convergent radius).

Finally, we obtain expressions for the thrust and power from these azimuthal magnetic
nozzles. For simplicity, we shall here assume cold plasma (hot encugh to be highly
conducting, but cold enough so that ('3 « '3 everywhere). However, Appeadix D will
lead us to the conclusion that tae neglected thermal contribution is about equal to the
magnetic contribution, aud has the same scaling as the u'mguetic contribution because
B = 1. Consequently, the following formulas should be viewed as giving the correct scaling
but an underestimate of the magnitudes (by about a factor of 2).

i) _Thruat and Power for the Annular Azimuthal Magnetic Nozale of Constant Radiys: -

e e IR e roan T e, = S

Basic to this discussion is the Bernoulli law, Eq. (BB-8-a). Lor cold plasma, it reads
| 1 V";’ + (1':‘3‘ = = co;xsiant along @he ann_ulal_'f:tnt,nl:e.

L .-‘L\faluatmg this equation at the noazle uwwer or xesewcur eud (R), at the throat (0), aml .
'..at the uozzle emt eud (e), we. h.we : . . .
\ *r("'o R P ":ﬁ, S (B-ﬂh)
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and,

Bgo = §nnn- (R - 20h)

Thus, hoth the mass density and the flux density at the throat have dropped to % of their
input values. To evaluate the thrust, we wrile, using (B-17) and (B-15),

T = (d]\]) V.
it
(Po‘ 0)Ve = (poC 40) (\/gcAo)Ao
= V3(poCho)do = \/5132@1‘10
0

4' 32 .
= (v35) (522) 4, (B-
9 Mo
wuere Ag = 2rrgdy is the area of the annular throat of the nnzzle, and in which Eq.

(B-20-b) was invoked at the last step. But Bgp is related to 1, the input (gun) current
applied to the electrodes, by Ampere'’s law, namely, '

}lnI
vy’

Bop = (B -22)

- Substitution of (B-22) into (B-21) yi_elds (with Ao = um'vo_).‘ S

' We therefore find that the annular azivathal mwle of constant vadins (vaviable. -~ -~
- thickuess), using a cold-plasia as the working fluid, produces o thrust which depends only

" upon the square of the current and on the ratio of nozzle thickness toradins nt the threat, "

- Neither the plasma density nor any nozzle dinension by itsell lms» sy mchvulu.xl eﬂect ol
© the thrust, : o L
’lo eval\mte the. power e)..mllﬁl by the noule we write
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Using (B-23) for T and (B-26) for V., the power expressed by (B-25) becomes

() () (e
P~(\/;9n2)uo (p}a/zro To)‘ B2

Comparing Eq. (B-23) and (B-27), we see that the power requirement for a given thrust
can be reduced simply by increasing rg, the annulus radius, for fixed current and fixed

(Ao/ra).

The current-voltage relation for this type of annular azimuthal magnetic nozzle (fixed
radius, variable thickness) can be obtained simply by recognizing that the expelled power
can only cone from the electrical power applied across the inner and outer electrodes,

P=]V (B~

Here V is the voltage applied across the electrodes. Fquating (B-27) and (B-28), we have
the following I, V relation. ‘ .

. 31\ af PP (Ao‘)
Vo \/-:»-TA G e Y e A B - 129)
( ) Qj-.v",").“o (P:{&rﬂ. o A _ ( ) )

. Tlmefoxe, the nozzle e!ectmal impadance is uoulmem and is p:oportlonai to ument

i) ;hmst and Power for ,t!ng,ém_uln; A;mmtthul I‘na&uo \

At __the ;mtiftiu'ua,t ,whz;lg dl‘fdt = U, we have shown that -
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- given i!te cold Pplasma mmlvl l\lmm\el fmm the lieruonlh equamm {B- 8.!), we. Mill have -
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N = 3('50 = 20 Aw |
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which is exactly the same as for the constant radius nozzle. Similarly, one can show that
the vequired power is

b (dAI)‘,g Tvpo ﬁ,}_ (é_o) L"_«a)_/_zf (T_O\. (B - 31)
dt 2°° 2972 | \mo / \ pif®ro ) \TR/

Comparing this with (B-27), we find that the power nsage in the constaut-thickness channel
of variable radius is larger by (ro/rg) than that of the constant radius, variable-thickness
channel,

APPENDIX C
COMPARISON OF PULSED AND
STEADY-STATE SYSTEMS

Recause steady-stete burns need to have their exhaust velacities near the vehicle
velocity increment of the mission (AV) in ovder to realize substantial payload mass
fractions withount excessive power conswmnption, one is forced to consider plasmas with
temperatures in the few eV range (AV ~ 10% em/s). T this case, the plasma conductivity
- does not pmclme & very tight coupliug of the plasma a.nd the maguetic fields, for either
kind of wagnetic nozale.

However, if is puwhlv at present to pmduw fav hotter {(or move epergetic) plasmas - ©

_(several hundred oV) in short pulses (theta pinch plasmas for meridional magnetic nozzles,

“and plasmas from pulsed coaxial plastna ghus for azimuthal magnetie nozzles), The higher -

- eonsluetivitios g gener ated in such plasmas engender o wove effivient conpling of the plasma -
_to the moguetie fields, This consideration, as well as the highey paylond obtainable with

ot waeol hot plastaas, motivates the present compitison of the steady burw of & low -

' enuwr.unw plasima with an alternative bnen composed ol inang short pulses of hot plasma.

“In mnl\mg such o usmpau‘lson meaninglul, cortain featwies need to be maintained .

- the swme i the two approachies, Thevetore, we shull tegnive that both. .;ppamuhex» st

- produce e some velority inerement of the vehiele; el both approuches Tuust opevate  ©
" with the e tinve-average power, The Tatter vegnivement veileets & gereral coneern that

.- bevatse the instantariens power depends wpon the cube of the exhanst velm ity, het
o plasinas will be tuo demanding - of preseatly vonceiable power sovrees, “These two

~conditions prove si_ictent to detennine the yebitive fuvel s uhhmlmn. bumiuuc, mmlgygi‘ "-
-stom. and duty feaction of the hot prdsed plasn sy \k-m, ' .
o Tor tie vepetitively pulsed approach; e total veloe m.' e mm-m Al ) 15 Ilw suin ui‘_;
- "the nummnts pmduusd in m\h pulw, (Imt is AR » -

AV \ > A u \ ;,,.i '»i-‘-~ -‘ ST ey

o Wwhere Vo, de the v\lums! wlm Wy of the pulued pl.nsnm. M; ix ﬂw tota) nuss nf the veliiede 0
- "nhm thc t‘ pulw, .md ¢ ; mllw umnim‘ ol pniws mmlml 0 puuluwllw *h.m;,e ol wiuw;w L
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AV, The solution of the rocket equation was invoked in writing down Eq. (C-1). But this
obviously leads tn the result that

}\lo . M;
=V, et C-2
"My, TP M, ( )

AV =V,
where Af; is the initial total mass of the vehicle and Alj,, is the final total mass of the
vehicle in the pulsed approach to the mission.

For the steady burn approach, we have

7 4 ) J‘I t
AV = Veutns T (¢ - 3)

where V, , is the exhaust velocity of the steady-state plasma, and Mjy, is the final total
mass of the vehicle in the steady-burn approach to the mission,
Since AV is assumed to be the same for hoth appmaches, we can equate (C-2) ‘u\d'
C.3). The result can be expressed as follows. :

. Heve, T, and T, ave vespectively the reservoir ‘pwmw, do} temperatuves of the steady aned

- pulsed plasinas, and we have mwi.ed the rclut on hel ween exliaust velouhes m;d pre-noazle ST

- tenum'utnw-.

S E l’V

. As an example, wppwzetlmt r“;* .9, .uul 2 1072 'Ilwn 3‘“‘ = 1()&.
u this ease, the steady barn wis lw;m&hm*‘ml to bn up S0% of the mmai mna*’,

bt the pulved approach mnospm;dmglv Hurned up only 5.5% of the initial wass. This ;
- efteet s due to the hypothesized high témperasture of the ;miﬁed plashaa: 'I]mﬁ, t!w pulwd__' P

- het plasa approach digplays very efficient utilizition of fuel mass, .
' What does the requireinent of equal thus-average powers imply about ilw relations

between the operational bien times of the two approachey, (Ai |’ :md (&) .md what_"~

;_'-"does it inply tor the duiy feaction of the repetitive pidses? -
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Replacing the exhaust velocities by their teniperature equivalents, and again noting
Fq. {C-6), we can write (C-5) as

M- My, (&), T,

= -2, C-7
(At), M; Mg, T, ( )
Noting (C-4), we can re-write (C-7) as follows.
Ta
; Mg . Tp
1— | 55
(At)y, T, ( M, ) (C -8)

V (At)szi 1—-—-11{5i

Again, as an example, consider T, = 100 T, aud My, = 0.5 M;. One finds %%%-))f = 13.4.
Thus, the aperational burn time hecomes somewhat longer in the repetitive-pulsed scheme.
This is a simple consequence of the requirement thal the time-average power remain small
in the pulsed scheme. Note that the dilation of the burn time goes essentially as /T, /7.

" What about the required duty factor of the pulsed system? Returning to Eq. (C-5),
we write it as : .
| My T, Ton | (€ -9)
MT, T

where ]\"I,, is the instantaneous mass flow rate during a pulse. But, for equal densities and
“equal areas, for example in the throats of the nozzles, this expression recuces to

T, 32 Ton o -
L I '~ 10
(T,,) : (¢ = 10)

- Clearly, expression (C-10) is easily generalized to accommodate different densities and
nozzle areas in the two schemes, Thus, if T, = 100 T, for the ralio of temperatures
of pulsed and steady plasmas, then we have T#a = 0,001 for the duty factor. In this
- case, a millisecond pulse would be repeated once each second until the requived AV is
attained. For examiple, it has been demonstrated that theta pinch lifetimes from endloss
“are a few times the axial thermal transit time and are insensitive to the plasma beta and
to the degree of collisionality.!® Thus, a 100 meter theta pinch with a hydrogen plasma
temperature of 100 eV would last for about one ms, if it were stabilized against “bad-
“curvature” instabilities associated with end effects. (Of course, one would either have to
bend the pinch into a “U” shape, or else use a conical theta pinch.) Other kinds of hot -

pulsed plasmas could also be considered as the propelling plasma fuel, in the class known

as compact tori (Field-reversed Clonfigurations® and Spheromaksi™).

In the foregoing discussion, it has been assnmed for simplicity that the initial total

mass of the vehicle is the same for the steady-state and pulsed schemes, even themgh ihe
power sonrees and ancillary equipment wiil be quite different in the two cases, However,
it is simple to generalize for different initial masses, My, and M, . Now, Ly, (C-4)is
- replaced by o - E
s 1) 43
Miy _ (n'!.s...ag)"' o
A‘Ifd’ AIfo’ '
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For example, with T, = 1007, and M;, = 2My,,, the result that (M;,/M;,) = 1.07
still represents a tremendons improvement in mass utilization even though A, may he
somewhat heavier thau A; . Looking {urther, we find that Eq. (C-8) is replaced by

VTa/Ty
@0, _ (o) (1) ()
(At),  \M;, ) \T,. 1 e

Clearly, the nominal burn times, (At), and (At),, will remain related essentially as before,
for the example T}, = 1007, and A; , = 2My ,, provided that the initial total masses, Af;
and M; ,, are at least comparable. Moreover, the required duty factor is still given by the
relation (C-10), regardless of the initial masses.

In conclusion, the basic advantages and disadvantages of the repetitively pulsed burn
scheme in comparison with the steady burn scheme may be sununarized as follows. The
pulsed hot plasma scheme affords far hetter fuel mass utilization, wnd far hetter coupling
of plasma to magnetic fields in virtue of the higher plasma conductivity. However, the
requirelment of low time-average power utilization forces longer operational burn times
for the pulsed system to achieve a given velocity increment, the bhurn time dilation
factor being given roughly as \/T,,/T,. This longer operational burn titne with the same
time-average power ulilization then implies that the initial on-board energy storage in
the pulsed system must be larger hy the same factor, \/ I’,,/ T,, and it therefore puts
a premium on the availability of high-energy-density storage (pex unit volume and per
unit mass), Moreover, other important issues arise, such as the veliability of vepetitively
pulsed, high-instantancous-power systems; and the implications of longer burn times for
the astrodynamic programming of the vehicle's missiou,

APPENDIX D | L
JON HEATING PROCESSES IN AZIMUTHAL .
- MAGNETIC NOZZLES, AND 'l‘lib,. _IO__N BETA

i'm' the meridional magnetic nozzle conh;,umhmt, it lms been awumed herein ﬂta%f
the plasiia veservoir is construeted and progratmmed in snehea mainer ‘that The hitersab =
- plusm.\ pressure substmmallv halmwm tlm Ntvnml 1\3«5.11&;&* pressure iu tlm “r&dﬁ?’

‘ lng.,h botu (/9 ~ l) plnsnm:, ave rmmuelv prmlncod eﬂwh as h\\ pta puwhm, P pmchea aud
Aield-revavsed configurations,- ha vxmw oi wa lhugimdmal mn;.,nvm' lmlrl.&. the fu'z-t aul
- the last of these (perhaps. melmhm., i

; tho plmmn) wonld na!urm( kel

Mield ekmuplo of maxml v
- We shall avgue heve !h’f:{ He 3f .~
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The argument is as follows. In coaxial plasma guns and azimuthal magnetic
nozzles, mmlike the meridional nozzle-reservoir concept, a pre-existing reservoir of
separately prepared hot plasma is not actually present. Instead, cold neutral gas is
“continually”introduced into the tube during a “shot” or a “run”, whereupon it is ionized
(by plasma already there) and suddenly picked up by the applied fields and by Coulomb
collisions with already-flowing plasma. l'or the case of short Coulomb-collision mean-free
paths, one can draw an analogy to the situation of dropping sand on a conveyor belt.
Newly-ionized ions suddenly appear (from neutrals “at rest”), and this introduction of
added mass into the dynamical system corresponds to the appearance of sand dropped on
the conveyor belt. Now, it is easy to show that the external forces maintaining the flow
velocity (of sand or plasma) are. in fact, providing both macroscopic flow energy and heat
energy (to the sand or plasma) at equal rates. Consequently, in the absence of losses, one
finds that an initially cold, plasma-fluid element (in which ion mass continually becomes
entrained) will have its flow energy and thermal energy about the same, %pV2 R %, at
any later time. Since the flow energy corresponds to a characteristic flow velocity-squared
given by V? & C2 + (2 near the throat of the azimuthal magnetic nozzle (see Appendix
B)x, where "2 = B?/( / pop) and C2 = yP/p are the squares of the Alfvén and sound
speeds respectively, one nnmedlately finds from 3pV? ~ P that 8 = 1.5 for v = 5/3.

(We defined a local beta here by 3 = P/(B?/2u0).) Thus, ﬁ =~ 1 is a reasonable relation
to use when consideriug collisional plasmas in azimuthal magnetic nozzles. Also, in the
case of coaxial plasma guns, one can argue that the magnetic field drives plasmas at or
near the Alfvén speed, leading again to the conclusion that g ~ 1

For a plasia having long collisional mean free paths, A > r.;, the “3" argument for
the azimuthal magnetic nozzle is different in detail from that given above, but the end resuit
i essentially the same. For plasma ions of low collisionality, the argument is based upon
thie smallness of the ion gyro-rading in comparisonr with all nozzle dimensions, r.; < L.
Table 1.5 shows that this is probably a reasonable assumption for all but the lowest ion
densities (n = 108 em™?), In such & case, one can show that the ion fluid axial velocity
in steady (low is hasically the sum of the (19,/Bg) drift velocity of the guiding centers of
the i luns, and the diamaguetic flow velocity associated with radial fon pressure gradients,

m,‘,, 851, Yere By is the azimuthal magnetic field, and B, is the radial electric field (or its

peneralization to axisyinmetric configurations), The latter velocity avises from incomplete

. cancellation of neighborving ion gyro-orbits in the presence of radial non-uniformities of

- jon presswre. For the puipose of a simple plansibility argument, we shall now consider a
‘~~pinsma free of transverse non-uniformities, Theu, the guiding-center drift velocity of the
dons. V= B/ By, also constitutes the ion fhuid velocity. (The notation, Vi, means that
one < an also think of this velocity as the velocity of mnguehc field lines.) If we now consider
~theorbit of a suddenly-ionized ion, initially at vest in crossed electrie and maguetic fields,
By sud By, we find the following. The ion orbit consists of « guiding conter drift velocity -
given by Vy = f;f , and a civeular gyration of the particle i the (1r2) plane about that

\vm:.. O

* Hem we mvu!.ml Appemh\ B which veglected mass entrainment in tlw flow. Thus,
“strietly speaking, we ace assuning here that the entrdimment process is limited to the
“vegion upstream of the thrant, We believe that this conceptual: detail, it altered, wuukl -
ot uwahd.uc Llw qualxtatwe conclusmn tlmt H ~ |, :
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guiding center. Here, il is essential to note that the circular velocity of the ion about its
giiding center, V;, has to be the same as the guiding center velocity, V.; = Vg, hecanse
this is the on‘v solution to the equation of motion of a charged particle in crossed I and
B fields that allows the jon to be born at rest (or with a velocity small against Vg). The

“consequence of such an orbit is that the energy density associated with the longitudinal
fluid velocity, %n.m,-\"g, must be the same as the energy density of the “thermal” motion of
the individual ions gyrating about their guiding centers. That is, the circular gyro-orbits of
‘the ions about their guiding enters constitutes an effective thermal pressure of the plasma
in the meridional plane (perpendicular to Byg). Since according to Appendix B, the fluid
flow velocity in the azimuthal magnetic nozzle is on the order of the fast magnetosonic

~ speed (with ¥ = 2 for a collisionless plasma), we again conclude that 8 must be on the

_order of unity (subject to trausport losses downstream).

‘ The arguments above strictly apply to ion heating, because the process of plasma
generation involves ion inertia being introduced (by ionization) into the moving electro
dynamical system. Heating of the non-inertial electrons in the azimuthal magnetic nozzle
must be treated from -a diflerent point of view. This is carried out in the following
Appendix.

APPENDIX E
ELECTRON HEATING PROCESSES IN
AZIMUTHAL MAGNETIC NOZZLES

In discussing the meridional magnetic nozale concept, we have assumed the existence
of a reservoir of prepared hot plasma, in which electrons and ions of a given temperature
_are introduced at the input side of the nozzle and thence flow through it according to the
rules of compressible MITD. However, coaxial plasma guns and azimuthal magnetic nozzles
(MPD thrusters) do not work this way.
Therefore, this picture was modified in Appendix D, to take into account that the
upstream source of plasma in azimuthal magnetic nozzles is really cold un-ionized gas.
Conceptually, the latter constitutes a source of inertial mass which is “legislated” into the
“dynamical system cousisting of ions and electric and magnetic fields. (The complicated
ionization processes that mediate this conversion do not need to he counsidered in detail
~lere, aside from the fact that they exist.) We then found that for either a sinall mean-free
path for Coulomb collisions, or a small ion gyro-radius, the sudden interaction of ions
initially at rest with the moving dynawical system actually constituted an jon heating
mechanisin leading to “beta” values of order nnity,
~ Because of the tiny electron mass, this is not a realistic mechanisin for electron
~ heating in these azimuthal magnetic nozzle devices. Instead, one must look to eqnipartition
“(temperature relaxation) and Ohmic heating, which we now do in this Appendix.
The reason that the topic of electron heating is important heve is that if the electron

- beta (T (183 /200)) is vaised to the order of nuitv, thon'tlw electron pressure contributes

_significantly to the fast magneto-sonic speed, (‘5 + ('3, and thereby increases the flow
speed of the plasma tlu'oubh tlw nozzle compmul lo what it would have I:ecn with cold

- ulec(mn&.
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I. ELECTRON HEATING BY TEMPERATURE EQUIPARTITION WITH
THE TONS
First, let us counsider thermal equipartition hetween cold electrons and ot ions due
to Coulomb collisions between them. We shall caleulate a time-scale for this process and
then compare it to the transit time through the nozzle. In the absence of all other processes
except this temperature relaxation (considering for simplicity a uniform two-temperature
plasma at rest), the basic equations can be put in the form? of coupled ordinary differential
equations in time for the evolution of the electron and ion temperatures, T, and T,

dT.

S =-ul-T) | (B
%?w(n—:r,-), S (B2

where the nominal equipartition rate, v, is given by

me 1 ‘ . '
— 9lte E -3
v=2 = ( )

and 77! is the electron momentum transfer collision frequency, v, introduced in Chap.
L., Sec. A. In the absence of density variations, v depends upon the electron temperature

~3/2 . .
as v = cons. X Ty /%, We shall express this dependence in the form
T.

where 11 is & constant rate corresponding to conditions at the initial time, and Ty is the
initial (upstream) electron temperature, '
An obvious result of Eqs. (E-1) and (E-2) is

T, + T. = const. = Ty = Tog + Tioy, (E - 5)

where Tjg is the initial ion temperature and 7). is a constant. Next, defining a time-like
variable x, and nopmalized temperatures 7 and 7. by

= 2U0t, _ (E - 6)

8 B
T Ty -3,

' and ] P]'
T*'E:?;'I‘.*;’ (L - 8)
Eq. (E-1) cau be rewritten as follows.

| gl - j- 9

MRl LAY | (&-9)
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This is equivalent to the integral relation

T .3/2
/ T (E - 10)
1 |

T4 — T

The integration can be accomplished in closed form, and the result is

. 1 32 " 3/2 7.1/2 1
24 —= [r - 1] - T4 [‘r - 1] + 7% |arctanh | —= } ~arctanh { — = X.
3 1/2 1/2
T, T,
(.

E —11)
" This relation implicitly provides electron temperature as a function of time, T(x), with 7y
as a parameter,

The time-dependence of the electron temperature due to thermal equilibration with
the ions is generally complicated as is apparent from Eq. (E-11). However, a simple
result can be obtained when the ions are hot and the electrons are cold, Thus if
> 1 (%Tio > Teo)yand if myp > 7 (%T;o > T.,), one can expand the inverse hyperbolic
tangents to {ifth order in their small arguments. Then, after several cancellations, one-

finds

o g o
(3Ti0)5/? ~ 5(%7';‘0)3/2(”00' \E-12)

From this result, it is immediately clear that the effective equipartition rate, t;ql, is given

by
Teo 3/2
teg 5 ( ¢ ) , E-13
:71.0 L) ( )
where, in hydrogen plasma with (nA = 10
me 1 _s‘n(cm"") .
e e 50 - 14
vo(s™1) = 2t m2X 10 RS (E - 14)

It can he shown that, for hot ions and cold electrons, the final electron tem;:ciature
is hall of the initial ion temperature, independent of the initial electron temperature. At
very large umes, (E-11) reduces to

2 ) ‘)7\ i/2
"'{1-(91‘/7 )l/e] ( ;J) (vof)

~In the large time limit whevein T, — 17T, the time dependence ol 1, is functionally
-clifterent from (15-12), but still cont.uus practically the same chavacteristic time scale.
Thus, according to the time scale implied by (F-13), the equipartition: rate is much smaller
than v, when the ions are much hotter than the electrons. The effective equipartition rate

- is obtained (except for & numerical factor) by veplacing the initial electron temperature bv -

half the uulm.l ion tempcmtm‘c (wlnch is also the final ion temperature),

ST




Since 8 ~ 1, the plasma transit time through the nozzle can he estimated as

t, = — (E ~15)

where v;[<7] = 1.3 x 106T1/ ? (V) is the thermal velocity of a hydrogen ion, and (, [em]
is the length of the azmmthal magnetic nozzle.

Now, using (E-13), (E-14), and (E-15), the muuber of equipartition times during a
nozzle trausit time can be expressed as (assuming T; = Tjg),

t Lo 10“3"(”".;3)&,(”"') (E ~16)

teg T3(eV)
Tt is interesting that the number of equipartition times depends only on the ion
temperature. As a working example, we take (; = 10° cm. Then we have the tabulation
listed below (Table E-1) for values of (t./t,).

TABLE E-1. The number of equipartition times during nozzle tvansit
) L for £, = 10 em.

T(eV] 10 100

nfem™3) = 1013 2 0,02
104 20 0.20

10 200 2.0

We conclude that the extent to which the electrons are brought up near the ion
temperature by energy-transfer during Coulomb collisions with the ions depends very
_sensitively on the ion temperature. For 10 eV ions (Alfven speeds near 4 x 108 em/fs
since 3 = 1), Table E-1 shows that eqmpartmou is to be expected at all densities of
- interest to us. However, for 100 eV ions (Alfvén speeds near 107 em/s since 8 =~ 1),
equipartition is achieved only at the higher densities.

II. ELECTRON HEATING BY RESISTIVE DISSIPATION

We now coutinue on to consider Ohmic heating of electrons in azimuthal magnetie
nozzles. The equation (les('nbm&, this process toutams the vesistivity Ny and thc square of .
'tlm current density J, and is* : : '

3 dI'
2 dt

B

= 1) ’3 ~ D,, 2;‘;

(E=17) -
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where n is the plasma density (assumed constant here), T, is the electron temperature,
where 1), is the instantaneous resistive diffusivity,

2 2 2
n {m c com
(D’?)MKS = (‘“) ,(Dn)cys = Z;U (—8—) ’ (E —-18)

Mo 8

with pg = 4m x 1077 henries/meter, where (Bg)arxs is the azimuthal magunetic field
in Tesla, and where ¢ (meters) is the characteristic length for spatial variations in Ry.
In writing the second equation in (E-17), we have used Ampere'’s law to estimate J in
terms of By. This type of heating relies upon randomization of electron momentum by
collisions with the ions, rather than direct energy transfer during a collision. Electron-
electron collisions subsequently incorporate the isotropized momentum into a Maxwellian
distribution characterized by an electron temperature. Although temperature equilibration
with the ions and resistive heating both occur simultaneously, we are considering them
separately here in order to clavify the behavior of the individual processes.

. -3/2 o
Since D, depends on electron temperature as Te ! , we shall write it as

3/2

D, DOT

73/2, (E —19)

where “0” refers to initial (upstream) conditions. Then, defining a normalized time-like
variable, x, by

2po !t E-20
=30 (£=20)
and a normalized temperature, 7, by
T= '";S*, (E - 21)
<0
we can write Bq, (E-17) as follows.
d\ /30 - o : (& : )
llere, we have defined the initial elecl.xfoﬁ beta by
2
RS = '_".L(:A = E,w}\, o | C(E-28)

"y
Beo  Too o ?‘Ie

. where (% & B the Alfvén speed in MRS anits, (The definition of 3. used here

] llﬂl
~difters bv a f.x‘c‘t:or of 2 from the usual definition of beta. The present beta is hall‘ of the
usual heta.) :
_ The solution to Tq. (1-22) can conveniently be expressed in terms of a times
dependent eleutron heta, ,d,,(t), with 7“ replacuu, Teo m th“ dehmtmu (1-23). The wsull

is : . , '.
Be= m[ tyn (,.,Dt:] C e
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We immediately see that there can be no appreciable electron Ohmic heating unless the
time ¢ exceeds the time scale, to, where

L;z

B (E - 25)

,BeO

As an example, consider { = 10 em, 1 eV electrons (D) ~ 107 <2~ en’) and an initial electron

beta of 1%. Then g ~ 1073 sec. (If ¢ =10 ¢m, then t; = 1077 sec.)
Let us suppose that the transit time through the nozzle is of order ¢4 or longer. Then

we can neglect the “1” in (E-24), and can estimate the electron beta from

2/5

5 t Dg ';/2 2/5
.Be = /3e0 gt,-zﬁ:; ( L,zﬂ ) (E - 26)
But note that
3/2 ;0 ‘.0 3/2 const
8 D,-,:( ) i const. (E - 27)
et T m;C3 T:O/ 2

Thus, the electron temperature cancels out, and we conclude that the electron heta
achieved by Ohmic heating is practically independent of the initial electron temperature.
Now let us define an “Alfvén temiperatwe” Ty by

mC3 =Ty, - (E - 28)

(Since the ion beta is of orcder unity by the m'gmnents in Appoudnx D, we expect that
- Ta= '1..) Then Lq. (E-27) hecomes :

LY

gDy =y -

where D" is the resistive diffusivity evaluated I>y xcplaung the elect roin temperat ure thh |
~the Allvén temperature, 2
~ Now, equation (15-26) reads

. . 5 t 2/5 . ! . -

Be = o D) ) o (B -30)
"V (‘3 t)ﬁ ) _ . : G

for t > 1y, Because the Allvén temperature is muech Iavger than the initial or nominal

electron temperatwre, we see that the effective resistive diffusivity that heats up the

~electrons is much smaller than we would have at first expected. 1 is essentially the vesistive

diffusivity ubtained by veplacing the electron temperature with the ion temperature (for ion

* - beta 21), which is reminiscent of the way things worked for the temperature equilibration

of cold electrons and hot ions. Insofar as the ion beta is indeed of order wity, we
“ean conclnde from (1-30) that the achieved electron beta will depend only on the ion -
tcmpuru!uw, plasima diniensions, and, ui comse, the vlapwd tine, : '

ios




We now calculate some examples for 3., and set ¢t = ¢, = (,/v;, on the order of
the transit time throngh the nozzle when the ion heta is of order nnity. As a working
example, we shall take ¢, = 10? cm. For the length, ¢, we shall use the radial thickness
of the annular magnetic nozzle ¢ == A, so that By drops off significantly in the radial
direction. This procedure assumes that appreciable axial as well as radial current flows in
the plasma. If this is not the case, then the result below for 3, must be multiplied by a
factor of (A2/(2)2/5 = A=4/5 where A is the aspect ratio of the nozzle.

Then, Eq. (E-30) becomes

. _ (36D o
Pe = mzv,

Since, in cgs units, £, = A numerically in the chosen example, we have (numericall
’ ] L]

which reduces further {for Ty = Ti, DA(22) » T}i’m, and v;(£2) & 1L.3x10°T; 2 (eV))

go= (2 ﬁ,,z.,oﬁ_)”‘ B0
CTA3 T TR(eV) T“/’»‘( V)

to

Then we have the following practical estimates.

T, =10 eV, P =048, H,_(nct-tml) = 0,96
T3 =100V, B = 0075, Belactual) =015

. Thus, we conclude, just as for the earlier equipaitition study, that the final electron heta
obtained by resistive heating depends sensitivity on the ion temperature, (I ge (actual)
~is close to unity, it means that T, is close to 7)) Colder ions signify slower flow speeds
(hecause By ~ 1), and lcnger times available for Ohmic 'heating.; of the electrons. If the
current density distribution is such that the factor A=5 is necessary, then it muat he
concluded that for A 2 10, vesistive heating of the electrons will be minor, _

We may smmmarize the qualitative results of Appendis 15 by stating that the rates of

-equipartition and Ohmie dissipation are not as a rapid as one would have supposed based .

~on the high Coulomb collisionality of cold electrons. Instead, these vates depend critically

- on the ion temperatare, Ethiip.ulitimx and Olimic dissipation should constitute effective - -
‘electron heating wechanisms in azimuathal magnetic nozzles (MPD thrusters) when the -

flow velocities {Alfvén S)L‘t’(lb) correspond 1o o lower range of enerigies (€ 10 €V7), but not
1 1 K

- when the flow velocities are in a vange of higher encigies (~ 100 ¢V'). - Moreover, if the - 8

current is mostly radml ole smpects th.n 1'c:susuw hieating of elwuuus is alw.sys a smedl. o
elku ' : S S :
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APPENDIX F
THE EFFECT OF THERMAL FORCE TERMS IN OHM’S LAW

The particular dependence of the Coulomb scattering cross section on the relative
velocity of charged particles (before averaging over velocity), gives rise to a number of
“extra” transport effects in a classical plasma.? We have already taken these extra terms
into account in our discussion of thermal conduction in Chap. 1. Here, we wish to examine
the effects of such terms in Ohm'’s law in relation to the problem of cross-field mass
transport.

The electron momentum equation divided by (ne) yields Ohm’s law, in cgs units,

— 1 - ~4 - , X B VP R
E+-VxB=nJ+ °+-—I—1'hs (F—1)
c nec ne
where ﬁ'p is the thermal force term.?
In the case of un-magnetized electrons,

R VT,
=T o _on—= (F—2)
ne €

When P,'VP, = T, 'VT,, it is clear that such a term can produce no significant new
qualitative effects heyond that already provided by the VP, term. However, since it is on
the same order as the VP, term, the thermal force term must be included in a detailed
study of mass transport in any situation that is influenced by the VP, term. Here, however,
we note that these two terms will have no influence at all on “radial” mass transport in
the meridional magnetic nozzle, according to the argwments alveady expressed in Chap.
1. Moreover, in the azimuthal magnetic nozzle with un-magnetized electrons, it can be
~shown that both of these terms are small compared to the vesistive pressure-driven term
{for radial trnnaport) in the vatio (3/8:) vs. (A7 ) wee/Vei)y With (weeftei) < 1. The
- conclusion is that the thermal force terms are generally ununportmtt when tlxc electmns :
are un-magnetized, S
When the electrons ave stronslv mag,,nehzetl lhc thermal lorce terin ecomes

P, Vul, '4 sy - .
_ !—rl = =), "1...l'£ - 1.5 (‘f&.‘i) : __....B XY.’.I;‘?. k v(p" -3)
_ne \ Veii ’ € )

To study mass transport, we evossed Ohm's law with 7§ and multiplied Ihmug,h hy (¢/ 13%).
Then we examined the “radial” component. (Here, we also must nmlhplv tlu'ough bv( A1)
Casin lenp. 1. ) 'l‘he tcrmb on’ thc rhs of Lq. {1 1) then bvcome :

: D,oP 1 (VR o~ D) e ( ary e
e} gl = . <15 - ) ( ) Ty AP =4) -
ras = 4"13’8 * e—J”* we PG )

wheve Dy, = (¢*/dn)y.
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In the case of the meridional nozzle, only the first and last terms survive, and the
Iast. term is the thermal force. These twa terms can he respectively shown to he in the
ratio %(/3/;3,-), where 3 = 3. + 3;. Thus, again no new qualitative effects are introduced
by the thermal force, provided that the ion beta is of the same order of magnitude as the
total beta. Nevertheless, it is interesting that the thermal force term is on the same order
as the resistive pressure driven term when the electrons are magnetized. The thermal force
therefore must be included in any detailed transport study of a specified meridional nozzle
design when the electrons are magnetized.

In the case of the azimuthal maguetic nozzle, we have already seen that the Hall
term, J,., dominates the resistive pressure-driven term when the electrons are magnetized.
Comparing the Hall term to the thermal force term, we easily find that they are in the
ratio 1/(wee /Vei) ™! = (Wee /¥ei) > 1. Thus, when the electrons are :aagnetized, the thermal
force term is niich smaller than the Hall term and can be neglected in the study of radial
mass transport in the azimuthal magnetic nozazle.

Here, we have considered only the extremes of un-magnetized electrons and strongly
magnetized electrons. The exact situation where the degree of magnetization is arbitrary
is very complicated, but all the formulas for Ry are known? and available for use in a
study of radial mass transpo:t, -
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LIST OF SYMBOLS AND DEFINITIONS
IN ORDER OF OCCURRENCE BEGINNING WITH CHAP. 1

Wpe,i

‘"‘e'.‘

"o
H-

Ter

e

Definition

plasma temperature

magnetic field

plasma pressure

ion-electron number density
(2“'DP/Bg)mks = (SWP/BZ)PQ'.!

4 % 1077 henries/meter (MKS)
electron number density

1on number density

Debye length: (T'/4mne in cgs units
electron charge (4.8 x 10719 esu or

1.6 % 107'? Coulombs)

electron (ion) plasma frequency: (41me [me i) ?
in cgs units

electron (ion) mass

Ap/(e2/T) or Ap/{De Broglie wavelength),
where the latter is used for 7' > 50 eV,

2.)1 12

Tydrogen atom symbol

-negative hydrogen ion symbol

* electron-ion distance within which
electvon orbit is significantly deﬁcct.v?d

by ien charge: (¢2/7)

. positive hydiogen jon symbol
- Coulomb se wttering cross section (eiievtwe)
- for cumnlative sntalbangle scativving

of un vlectron leadmg to 30“ ddiectn_m:

el A R
o eleetvon nmnwntmwtmmk*r mllmmn hccmencv o
- tor-electron seattering hy jvist ",t‘f“l‘ o
vleetran (ion) theymal velovity: (2 e,,‘/m.,,,.) [ s -

- electron {ion) temperature.

degece of fonization of plasing

“nevntral hydvogen atow number dvnmw
total nunber densitymn, -+ a gy

gronmd state ionization euergy of thc '
hedvager aimut 13.6 ¢V

Planek’s constant

UTRES

e




Tee,i
Wee,i

\]

‘pnn o '

Definition

electron-atom collision frequency
characteristic macroscopic length scale
characteristic fluid velocity

collisional mean-free path

thermal velocity

diffusivity: Avgy

collision frequency

cylindrical coordinates

electron (ion) gyro-radius: v i /wee ;
electron (ion) gyro-frequency {cyclotron frequency):
(eB/mgi€)eqs

velocity of light in vacuum: 3 x 10! em/s
diffusivity: %

ion-ion Coulomb collision frequency
electric curvent deusity

plasma resistivity

 electran (ion) pressure
- electric fiekd
plasiin mass density: myn

unit vector in the “radial® thw(‘tmn

unit veelor in the radial direction
- uzimuthal angle coordinate
" chavacteristic transverse (longitudinal) dimension
~ azimnthal component of fluid (plusma) veloeity -
S Allvén (sonnd) speed: (H"/-irrmgg, or (vl’/p)""
- ratioof specific heats, nsually taken as v= 5/3
- azimnthal magnetic field.
- eleetvon (ion) betas (2o P, /H”)mm = (SW.P,,./B )e,,

inid veloetiy conmponent !mnsvenw o .B

- gniding center drilt vdcmty' -
,_(L X l}/B'!)M{‘e (t’I' R B[ﬂ )@g,
~_carrent density component transvésse Lo B

~pavticle thux deusity: nt

O vesistive diffusivitys (i)i}!!g)h\;:‘s g (; :)/-irr},‘,.
L patiele difinsivity: 20, R
U chavacteristic time !m pm‘hclc loss lrm;s\msely-' o
 radial dimension of wozzle G
magnetic Revuolds wmbee: Viaf I)., v Dg_‘ :
< axial componeit of fuid {lasna) velocity- :
- pozzle agpedt vatio: O fu or U,/
el vaciad spacing of g‘h‘i‘hmk‘s
eletrical conductivity, of plasniu: 3~ '
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te

e

Rp
H,
Py
P
Vo
Cao
T

&,R.||,n+,&°°‘

Definition

characterstic time for longitudinal electron
thermal conduction

thermal diffusivity for parallel electron thermal
conduction

longitudinal (axial) transit time:
rafdialtéomponent of fluid (plasma) velocity
radial (axial) component of magnetic field

“azimuthal (radial, azial) component of

current density

componerts of electric field

axial thickness of sample of resistive metal
transient time for approach to asymptotic velocity
radial Alfvén time

magnetic Reynolds number defined using the Alvén
speed

applied axial force (per unit ares) acting

upon sample of resistive metal

cartesian analog of radial component of magnetic
field

component of fluid (plasma) velocity parallel to

B

radius of curvature of magnetic field line in

region of nozzle exit

area of nozzle exit (throat)

cartesian analog of azimuthal component of cm‘rent
density

value of 4 in nozzle throat

- rate of fuel mass loss from vehicle

resistive skin depth corresponding to time t,.,
charvacteristic radius of plasma
characteristic time for diffusion across a
characteristic radial dimension

- Reynolds number associated with (hﬂuswny D

Interal hieat loss rate

kinetie power in nozzle throat

kinetie power in nozzsle exit

fluid {plasina) velovity in nozazle throat
speed of sound in nozzle throat

plasme temperature on centerline

in nozzle throat

plasmia thermal conductivities (along and

acfpgs B ) and also for electrons (ious)




Symbol Definition
\J.- + . qd’q‘u) 6Ta ‘—f'i “ heat fluxes
" \ b unit vector along B
i fluid velocity of electrons relative to ions:
. J/ne
) Dy, De thermal diffusivity along (across) B
and also for electrons (ions)
g Dgotm Bohm diffusivity: 0.2(cT'/eB)cq,
< o (1 + T/ T w2 2,
.‘ _ " parameter in connection with Bohm transport
o ' RBohm Reynolds number hased npon Dgopm
g : equivalent gravitational force
r growth rate for Rayleigh-Taylor instability
Q inverse scale length of unsiably stratified medium
A radial scale length of unstably stratified medium
tg.c.,{B.C. transit time and longitudinal length
scale of “had curvature” entrance
region of nozzle
@ ] 0V, op,... » perturbations of velocity, mass density,. ..,
E associated with the Rayleigh Taylor instability
A Kyw . wave number and complex frequency of the
' - Rayleigh-Taylor instability '
£a - normal houndary displacement due to the
. v ~ Rayleigh-Taylor instability
N ,  Poypoye.. unperturhed pressure, mass density, ... profiles
' , subject to the Rayleigh-Taylor instability
s compressional commuication speed across the
o magnetic field direction
Dy equivalent diffusivity due to the Ravlexgh-’lavlor
, . ~ instability
rp.a. , nozzle radius in the region of “badl curvnmre
Rpe field-line radius of curvature in “bad c\u'vature
- ’ region
qnt : quasilinear heat flux induced by Rayleigh-Taylor
' instability
B, ' - radial space-charge electric field in the plusma sheath
I plasma sheath potential drop
A, ' - plasma sheath thickness
I _ v guiding center drift velocity in the plasina sheath o
I ky - wave number for flute modes induced by the .
" ' . o -~ Kelvin-Helmholtz instability
. r - growth vate of the KelvineHobmboltz instability
Bokm ~ simulation vesult for Holiu diflusion induced by the
' *lwll\iut -Helmboltz instability :
H :




Symbol

fmaaa loas

'
9Bohm

LRoua LPlanck

P, brem
P, rad

r

tbrem

Tedge
Ty

Te

osB
w

Kw
A
the
U

v
\L"'

; BD, Vb,po s

. Co
H{U}
{S(U)

Y )

]
vy

3

Deflnition

mass loss fraction due to radial transport during
axial transit of the nozzle

heat flux due to Bohm transport induced by the
Kelvin-Helmholtz instability

Rosseland and Planck optical absorption lengths
bremsstrahilung power per unit volume

radiation surface power density on the wall
characteristic radial distance to the wall
characteristic time for energy loss due to
bremsstrahlung '

surface temperature of optically thick plasma
surface temperature of hot side of wall next to-
plasma

surface temperature of side of wall away from
plasma

Stefan-Boltzmann constant for surface radiation
power flur through wall bounding optically thick
plasma

thermal conductivity of wall hounding optically
thick plasma

thickness of wall hounding optically

thick plasma

characteristic time for energy loss due to surface
(Black Body) radiation

stream function for mass flux

stream funtion for magnetic flux

d fdU

values of magnetic field, velocity, density ...

in the throat of the nozzle (Quasi | D)

speed of sound in the throat

enthalpy

entropy

in (‘ﬂmx» 11 m\ly: (B/\/ﬁd)n“cs

G4
“wnit tangent vector along 17

unit normal vector perpendicular to 3
distance measured along streamlines
curvature of a streamline

stream {unction and velocity potential for the
quasi- 11) cage ' o
¥4, in the quasi-11) case

artificial damping coellicient for solving the
quasi-1D PDE using avtificial time o
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Symbol

r1(z)
#(C)

Tuw (L)) 2y (0)

UO("!’)X)
Ui(¥, x) Bi(¥, x)

ai, b;

Py,(2)

q’mam
BOmax

o

M

Ao
Dm‘
Aii

o«

Vth BM

s

f!
T

Definition

radius of the plasma-field interface
nozzle opening half-angle vs. distance aloug

~ nozzle wall

radial and axial coordinates of nozzle
wall vs. distance along wall
quasi 1-D solution for the mass flux

 basis functions for representing the general 2D

solution

coefficients of the expansion of the solution in:
basis functions .
coefficient in the non-uniform pressure profile in

the throat: Py = const. x (1 + €U) '
the “cusp” speed: C'sC4(C2 +C7)~1/?

a dimensionless measure of magnetic field -
strength: W'(U),/po

radial width of the vacuum field region in a

sharply bounded plasma profile where

6(2) < ru(2)

plasma pressure at the plasma-field interface
the magnetic flux that “stuffs” the

nozzle in the sharp-boundary profile

the corresponding value of magnetic

field strength in the nozzle throat

the nozzle radius at the throat

the numaber of mesh points in each dimension
the (normalized) time needed to reach

a state of steady flow in the

initial value approach, in units

of a characterstic physical time

_azimuthal component of the
. magnetic vector potential

viscous diffusivity (kinematic viscosity)

“mean-free path for ion-ion Coulomb

collisions

ion-ion Conlomb collision frequency

in the meridional nozale: Vi = aBM
mericional components of fluid velocity
and magnetic field

Huid vorticity

thrust




AV

Ve

M,

M

T,

Ves

Ton
T= To_n + Toff
M,,

(At)sp

total mass of vehicle after

Definition

exit velocity of plasma

speed of sound, pressure .. .in the reservoir
power in the exhaust

fast magneto-sonic speed: (CZ + Ci)l/ 2
racius of reservoir (i.e. at breech of

coaxial gun or azimuthal nozzle)

velocity increment of vehicle

exhaust velocity in pulsed system

¢t pulse

initial (final) mass of vehicle

reservoir temperature in steady (pulsed) system -
exhaust velocity in steady system

the “on” time of a pulse

the total tinie for a pulse

the instantaneous fuel mass flow rate in

a steady (pulsed) system

nominal burn time for a steady (pulsed) system
nowinal rate for equilibration of electron

‘and ion temperatures in the azimuthal nozzle

initial temperatures prior to equilibration
effective equipartition rate

Alfvén temperature: m;('3

resistive diffusivity evaluated using the
Alfvén temperature instead of the electron
temperature

tiwe variable
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Fig. 4.

Fig. 5,

Fig. 6.

Fig, 7.

Fig. 8,

Fig. 9.

Fig, 10.

Fig. 11.
Pig. 12,
Fig, 13,
- Pig. 14,
Fig. 15,
Fig. 16,
Pig. 17,

LIST OF FIGURES

. Functional dependence of Velocity V, Density p, and Pressure P, on Magnetic erld :

Strength B, along streanilines in the Meridional Magnetic Nozzle.

. Axial variation of fluid variebles for a quasi-1D Meridional Magnetic Nozzle produced

by a single-turn filamentary coil (—§~ =(1+ 22)"3/ %),

. A body-fitted coordinate system for-the JPL nozzle (Ref. 11) computed by the

method outlined in section II-B.

. Coordinate grid for hyperbolic nozzle with 45° opening half-angle at each end. Every

fourth line constitutes the course grid, equally spaced in ¢ and x (see Sec. II-B).

“The remaining lines constitute the (unequally-spaced) Gaussian quadrature subgrid * -

used to perform the integrals in Eq. (11.41) (see Sec, 1I-C).
Streaimlines for un-magnetized flow through the hyperbolic nozzle of Fig. 3.

Contours of constant (pV)? for un-magnetized flow through the hyperbolic nozzle of
Fig. 3. ‘

Variation of (pV')? along streamlines for un-magnetized flow through the hyperbolic
nozzle of Fig. 3. ‘

Contours of constant velocity for un-magnetized flow through the hyperbolic nozzle
of Fig. 3. ,

Variation of velocity along streamlines for un-magnetized flow through the hyperbolic
nozzle of Fig, 3.

Contours of constant density for un-magnetized flow through the hyperbolic nozzle
of I'ig, 3.

Variation of density along streamlines for un-magnetized flow through the hyperbolic
nozzle of Fig, 3.

Cloordinate grid for JPL nozzle (Ref. 11) using the same scheme as in Fig. 3.
Streamlines for un-magnetized flow through JPL nozzle.

Contours of constant (pV)? for un-magnetized flow through JPL ﬁézzle.

Variation of (pV)? along streamlines for un-magnetized flow through JPL nozzle,
Contours of constant density for un-tagnetized flow through JPL nozzle,
Variation of density along streamlines for un-magnetized flow through JPL nozzle.

soutours of constant pressure for un-magnetized flow through JPL nozzle.
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Variation of pressure along streamlines for un-magnetized flow through JPL nozzle.

‘Clontours of constant mach number (w1t11 v = 5/3) for un-magnetized flow through

JPL nozzle.

Contours of constant Mach munl)er (w:th y=1 4) for un-magnetized flow through
JPL nozzle.

Streamlines in the JPL nozzle for the un-magnetized non-uniform pressure configura-
tion, Po ~ (1 + €U), with € = —0.02. Flow reversal at the nozzle entrance is mduced
by a non-uniform pressure profile in the reservoir.

. Streamlines in the JPL nozzle for the un-magnetized non-uniform pressure configu-

ration, Py(1 + el/), with € = 0.02. Flow reversal at the nozzle entrance is induced by
a non-uniform pressure profile in the reservoir.

Streamlines in the hyperbolic nozzle for magnetized flow with ¥'(U) = const. aud L
a = 0.8 (Sec. 11-C.3).

Contours of constant (pV')? in the hyperbolic nozzle for magnetized flow with ¢'(U)
= const. and o = 0.8 (Sec, 11-C.3). :

Variation of (pV)? along streamlines in the hyperbolic nozzle for magnetized flow
with ¢'(U) = const. and « = 0.8 (Sec. 1I-C.3).

Contours of constant velocity in the hyperbolic nozzle for magnetized flow with ¢ (U )
= const. and o = 0.8 (Sec, 11-C.3).

Variation of velocity along streamlines in the hyperbolic nozzle for magnetized flow
with ¥'(U) = const. and o = 0.8 (Sec. 1I-C.3).

Contours of constant density in the hyperbolic nozzle for magnetized flow with ¢'(U)
= const, and « = (.8 (Sec. 11-C.3).

Variation of density along streamlines in the hyperbolic nozzle for magnetized flow
with ¢'(U) = const. and « = 0.8 (Sec. 11-C.3).

Streamlines in the JPL nozzle for magnetized flow with ¢'(U) = const. and o« = 0.8
(Sec. 11-C.3).
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const. and « = 0.8 (Sec. 11-C.3),

Variation of (pV')? along streamlines in the JPL nozzle for magnetized flow with
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Iig. 34. Variation of density along streamlines in the JPL nozzle for magnetized flow with
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Fig. 40.

' (U) = const. and o = 0.8 (Sec, II-C.3).

Contours of constant pressure in the JPL nozzle for magnetized flow with ¢'{(U) =
const. and a = 0.8, ‘

Variation of pressure along streamlines in the JPL nozzle for magnetized flow with
Y {U) = const. and o = 0.8. )

Example of a magnetically confined sharp boundary flow field in a meridional
configuration similar to the JPL nozzle.

Example of a magnetically confined sharp boundary flow field in a meridional
configuration near the “stuffing” limit. "

Example of interlaced elliptic and hyperbolic regions in a magnetically confined
plasma with a diffuse profile in a meridional magnetic nozzle,

FRC compression on #¥RX-C, 2-D MHD simulations, time evolution of flux surfaces

P(r, 2).

121







300 ] l K] " l

28 |- -
26 L - .
24 |- 4

0 02 04 06 08 10
S Mg Y
- By

th l-a Functional dependence of Velocity v, Density p. and Pressure P, on Magneuc Fteld
Strength B, along streamlmu in the Mendaonal Magnetnc Nozzle.

123




N\l

o
COIL
T

_ -4.0 -3.5-3.0-25-20-15-10-05 0 05 10 1.5 2.0 25 3.0 3.5 4.0

‘1.

O T I T | l>,IJ | l,._l
N O QO E QOB Y O
N N v L 0 O :

1
0
c

an 1-b. Axtal variation of fluid variables for a quasi- 10 Meridional Mapneuc Nozzle produced by
- a smgle-tum fdamentary coil («B = (1 + z’)"’"“) B ,




5.4 T ‘ *
5.2 :
5.0
4.8
4.6
4.4 : ]
4'2 )
4.0
3.8
3.6
3.4
| 3.2 W
—_ 9.0 1
%,'35 2.8 ' q
2 2.6 ] _ \ ]
N 2.4 E | ]
2'2 -
2.0 =R i
1.8 £
1.6 !
1.4
1.2k _ 1
’ i
1
) W8 B H !
~ '06 . ’ { |
R F‘l{[
02 2}*:‘
e e e " o x
T (INCHES) .

>"'.> Flg 2. A body-fitted coordmate system for the JPL nozzte (Ref 11) computed by the method
'7 outlmed in section II1-B. R




3.5

3.0

2.5 |

2.0 f 7

1.5

1.0

‘d

wweasl AHVUEEEN TOUUE RN U8 I
© w. o oW e w
' - ' o ~

~_perfomnhe mt\.grals in Eq (Il 41) (see bec i C)

Fug 3 Ccordmale grid for hyperbohc nozzle with 45’ opening half-angle at each end. Every -
: © fourth line constitutes the course grid, equally spaced in ¢ and \ (see Sec, I-B). The
© - remaining lines constitute the (unequally-spaced) Gausuan quadrature subgnd uud to:




R < 127




—300
=35 1 ] | i L]
o V) ) v o Y,
L] - .. [} .
- e o~ o~
r.

Fig. 5. Contours of constant (pV’)? for un-magnetized flow through the hyperbolic nozzle
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o -Fig. 7. '(:Ic‘mtours of cons.ant velocity for uh-,magnétizcd-ﬂow through the hyperbolic nozzle of




.Fig. 8. Variation of velocity along streamlmes for un-magnetized flow through the hyperbolic
nozzle of an 3. :







Fig. 10. Variation of density along streamlines for un-magnetized flow through the hyperbolic nozzle
of Fig. 3. - '. A : :
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. Variation of density along streamfines in the hyperbohc nozzle for magnenzed flow wnth
| “(U)““consh anda 0S(Sec IICS) ' g
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and a = 0.8 (Sec. 1I-C.3). ' '
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